Spain | A Nice Algebra Problem

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 10

  • @عبدالواسع-س8م
    @عبدالواسع-س8م Місяць тому

    Thanks so much.

  • @tigerinthejungle_14
    @tigerinthejungle_14 Місяць тому +1

    Easier method:-
    If we take the sq.rt.27 in the numerator and make it 3*sq.rt.3 and make the sq.rt.27 in the denominator into (sq.rt.3)^3 and then we get num. and den. equal, so we can directly cancel it

  • @juergenilse3259
    @juergenilse3259 Місяць тому

    We can rewrite enumerator and denominator sepaately as powers of sqrt(3):
    sqrt(3)^sqrt(27)=sqrt(3)^sqrt(3^3)=sqrt(3)^(3*sqrt(3))
    sqrt(27)^sqrt(3)=sqrt(3^3)^sqrt(3)=(sqrt(3)^3)^sqrt(3)=sqrt(3)^(3*sqrt(3))
    So enuerator and denoinator have the sae vaue, and therefor the resut is 1.

  • @jax2907
    @jax2907 Місяць тому

    It's much easier to think of the non-exponent roots as a^(0.5).
    Changes it to:
    =3^(0.5*rt(27)) / 27^(0.5*rt(3))
    =3^(0.5*3*rt(3)) / (3^3)^(0.5*rt(3))
    =3^(1.5*rt(3) / 3^(3*0.5*rt(3))
    =3^(1.5*rt(3) / 3^(1.5*rt(3)
    =1

  • @michaeldoerr5810
    @michaeldoerr5810 2 місяці тому

    The answer is 1. Also I have figured it out without using your method.

  • @baselinesweb
    @baselinesweb Місяць тому

    Nice problem, but can the music. Nobody is interested in that - this is a math tutorial.

  • @tigerinthejungle_14
    @tigerinthejungle_14 Місяць тому +1

    What you did is a very long method, I got it in a second 😒😒

    • @eugenstar81
      @eugenstar81 Місяць тому

      This is beauty of math. Step by step. Dance of numbers

    • @tigerinthejungle_14
      @tigerinthejungle_14 Місяць тому +1

      @@eugenstar81 What I say is there is simple method to do it so, why should we elongate it so much

    • @baselinesweb
      @baselinesweb Місяць тому

      Whoopdie doo for you