Math Hunter
Math Hunter
  • 687
  • 2 303 087
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
GET MY EBOOKS
•••••••••••••••••••••••
150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2
Function : payhip.com/b/ytewk
Sequence and Series : payhip.com/b/BKljT
Differentiation : payhip.com/b/Wm2YH
Indefinite Integration : payhip.com/b/8Ib2B
Definite Integration + Area under the Curve : payhip.com/b/1gOtk
Trigonometry : payhip.com/b/8UhkS
OTHER CHAPTERS : COMING SOON.....
--------------------------------------------------------------------------------
Переглядів: 823

Відео

Germany | A Nice Square Root Algebra Problem | Math Olympiad
Переглядів 3,7 тис.16 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Exponential Algebra Problem | Math Olympiad | 2 Methods
Переглядів 8122 години тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Algebra Math Simplification | Math Olympiad
Переглядів 1,3 тис.2 години тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 8204 години тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Algebra Simplification | Math Olympiad
Переглядів 3,4 тис.4 години тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Square Root Algebra Problem | Math Olympiad | 2 Methods
Переглядів 4,3 тис.7 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Algebra Math Simplification | Math Olympiad
Переглядів 1,2 тис.7 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Square Root Algebra Problem | Math Olympiad
Переглядів 23 тис.9 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 1,2 тис.9 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Sweden | A Nice Algebra Math Simplification | Math Olympiad
Переглядів 87612 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Poland | A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 57512 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Algebra Math Simplification | 2 Methods
Переглядів 74114 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 7 тис.14 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Algebra Simplification | Math Olympiad
Переглядів 20 тис.14 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Japanese | A Nice Algebra Math Simplification | Math Olympiad
Переглядів 11 тис.16 годин тому
Japanese | A Nice Algebra Math Simplification | Math Olympiad
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 21 тис.16 годин тому
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Simplifying double factorial and triple factorial
Переглядів 58319 годин тому
Simplifying double factorial and triple factorial
Japanese | A Nice Algebra Problem | Math Olympiad
Переглядів 65521 годину тому
Japanese | A Nice Algebra Problem | Math Olympiad
A Nice Square Root Algebra Problem
Переглядів 1 тис.День тому
A Nice Square Root Algebra Problem
A Nice Square Root Algebra Problem | sqrt(x+35) = sqrt(x) + sqrt(5)
Переглядів 7 тис.День тому
A Nice Square Root Algebra Problem | sqrt(x 35) = sqrt(x) sqrt(5)
Russia | A Nice Algebra Math Simplification | Math Olympiad
Переглядів 1,3 тис.День тому
Russia | A Nice Algebra Math Simplification | Math Olympiad
Poland | A Nice Algebra Problem | Math Olympiad
Переглядів 1,2 тис.День тому
Poland | A Nice Algebra Problem | Math Olympiad
Japanese | A Nice Square Root Algebra Problem | Math Olympiad
Переглядів 10 тис.14 днів тому
Japanese | A Nice Square Root Algebra Problem | Math Olympiad
China | A Nice Square Root Algebra Problem | Math Olympiad
Переглядів 1,5 тис.14 днів тому
China | A Nice Square Root Algebra Problem | Math Olympiad
A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 66214 днів тому
A Nice Exponential Algebra Problem | Math Olympiad
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Переглядів 8 тис.14 днів тому
Japanese | A Nice Exponential Algebra Problem | Math Olympiad
Japanese | A Nice Algebra Problem | Math Olympiad
Переглядів 2 тис.14 днів тому
Japanese | A Nice Algebra Problem | Math Olympiad
Japanese | A Nice Square Root Algebra Problem | Math Olympiad
Переглядів 20 тис.14 днів тому
Japanese | A Nice Square Root Algebra Problem | Math Olympiad
The Viral Problem That Stumped the Internet | Math Olympiad Algebra Problem
Переглядів 65414 днів тому
The Viral Problem That Stumped the Internet | Math Olympiad Algebra Problem

КОМЕНТАРІ

  • @ajitandyokothakur7191
    @ajitandyokothakur7191 Годину тому

    Too many unnecessary intermediate steps with repeats. Dr. Ajit Thakur (USA).

  • @BobGillah
    @BobGillah Годину тому

    13.928

  • @ronaldnoll3247
    @ronaldnoll3247 6 годин тому

    x=(1/3) log(4) 20 x=0.7203

  • @ronaldnoll3247
    @ronaldnoll3247 7 годин тому

    x=log(5) (20/3) x=0.5894

  • @samwang4202
    @samwang4202 8 годин тому

    X=2+3e^(i 2n pi/6), n=0,1,2,3,4,5

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 8 годин тому

    Today is my birthday! Well done, Math Hunter ;)

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 9 годин тому

    =(3vʼ3(2+vʼ3))/(3vʼ3(2-vʼ3))= =((2+vʼ3)(2+vʼ3))/((2-vʼ3)(2+vʼ3))= =(2+vʼ3)²/(2²-(vʼ3)²)= =7+4vʼ3≈13.9282

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 10 годин тому

    Nice solution and answer of math problem! Cool, Math Hunter >:D

  • @gilbertgeraud5406
    @gilbertgeraud5406 11 годин тому

    Amazing !

  • @yurenchu
    @yurenchu 11 годин тому

    (5^x * 5^x * 5^x)/(5^x + 5^x) = 10/3 ... divide numerator and denominator of LHS by 5^x ... (5^x * 5^x)/(1 + 1) = 10/3 (25^x) = 20/3 x = ln(20/3)/ln(25) x = [ln(20) - ln(3)]/[2*ln(5)] x = [ln(5) + ln(4) - ln(3)]/[2*ln(5)] x = (1/2) + [ln(4) - ln(3)]/[2*ln(5)] x = (1/2) + [2*ln(2) - ln(3)]/[2*ln(5)] x = (1/2) + ln(2)/ln(5) - ln(3)/[2*ln(5)] x = ½ + log₅(2) - ½*log₅(3)

  • @عبدالواسع-س8م
    @عبدالواسع-س8م 12 годин тому

    Thanks so much !

  • @yurenchu
    @yurenchu 13 годин тому

    (√108 + √81)/(√108 - √81) = = (6√3 + 9)/(6√3 - 9) = (2√3 + 3)/(2√3 - 3) = (2 + √3)/(2 - √3) = [(2 + √3)*(2 + √3)]/[(2 - √3)*(2 + √3)] = [ 4 + 4√3 + 3 ] / [ 4 - 3 ] = [ 7 + 4√3 ] / [ 1 ] = 7 + 4√3

  • @IrfatIslam-22
    @IrfatIslam-22 14 годин тому

    Done

  • @peteryoo2170
    @peteryoo2170 15 годин тому

    Write 4 exactly 😮

  • @Sekar-888
    @Sekar-888 15 годин тому

    Conjugate method.. Done 👍

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 16 годин тому

    I wish you could give this exercise some flavour by calculating the square root of the number we call A, where A=7+4√3=(2+√3)² and hence√A=2+√3

  • @BossDropbear
    @BossDropbear 16 годин тому

    Standard approach ... (sqr(108)+sqr(81))/(sqr(108)-sqr(81)) =(sqr(108)+sqr(81))^2/(108-81) =(108+81+2*sqr(108)*sqr(81))/27 =(27*7+2*6*sqr(3)*9)/27 = (27*7+27*4*sqr(3)/27 = 7+4*sqr(3)

    • @dougnettleton5326
      @dougnettleton5326 Годину тому

      A much shorter solution unless you're afraid of numbers with more than two digits.

  • @IrfatIslam-22
    @IrfatIslam-22 16 годин тому

    That was way too easy

  • @prollysine
    @prollysine 18 годин тому

    (x-6)(x+6)(x^2+36)=0 , x= 6 , -6 , 6i , -6i ,

  • @kajalbanerjee8220
    @kajalbanerjee8220 21 годину тому

    6

  • @phucduong960
    @phucduong960 День тому

    x/6 . x/6 = 6/x . 6/x x^2 / 36 = 36 / x^2 x^2 . x^2 = 36 . 36 x^4 = 1296 x^4 = 6^4 x = 6

  • @عبدالواسع-س8م
    @عبدالواسع-س8م День тому

    Well done ! Thanks so much !

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm День тому

    x=(3ln2)/(ln5-ln2)-2≈0.2694

  • @cosimo7770
    @cosimo7770 День тому

    Like old-fashioned courtship, slow but inevitable.

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 День тому

    Nice !)

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 День тому

    Wait a minute, I have seen this somewhere before, but I don't know where and when ... Anyway, good solution of this problem, Math Hunter.

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 День тому

    Wait a minute, I have seen this somewhere before, but I don't know where and when ... Anyway, good solution of this problem, Math Hunter.

  • @evrankorkut8915
    @evrankorkut8915 День тому

    Teşekkürler

  • @ALEX.1R
    @ALEX.1R День тому

    Wiki Imaginary unit There are two complex square roots of −1: i and −i, just as there are two complex square roots of every real number other than zero (which has one double square root).

  • @佐藤広-q2u
    @佐藤広-q2u День тому

    The uploader probably showed two methods to show that there is more than one method to solve the problem. However, I think that only a few people solved the problem using the 1st method. The 2nd method should be recommended because the calculations of 1st method are complicated, it takes more time, and there is a risk of making mistakes. For such an easy problem, it is important to solve it quickly, not just to get the answer right.

  • @tuneharukawano6005
    @tuneharukawano6005 2 дні тому

    簡単そうで奥深いですね。毎回興味深く拝見しています。

  • @walterwen2975
    @walterwen2975 2 дні тому

    Japanese Math Olympiad: √(3 + √8) + √(3 - √8) =? 3 = √9 > √8, √(3 + √8) + √(3 - √8) > 0 3 ± √8 = 3 ± 2√2 = (√2)² ± 2√2 + 1 = (√2 ± 1)² √(3 + √8) + √(3 - √8) = √[(√2 + 1)²] + √[(√2 - 1)²] = (√2 + 1) + (√2 - 1) = 2√2

  • @joseeduardomachado3436
    @joseeduardomachado3436 2 дні тому

    Gostei do exercício.

  • @gelbkehlchen
    @gelbkehlchen 2 дні тому

    Solution: (10^x+10^x+10^x)/(5^x+5^x) = 100 ⟹ 3*10^x/(2*5^x) = 100 |*2/3 ⟹ (10/5)^x = 200/3 ⟹ 2^x = 200/3 |lb() ⟹ x = lb(200/3) ≈ 6,0589 ⟹

  • @عبدالواسع-س8م
    @عبدالواسع-س8م 2 дні тому

    Great work ! Thanks a lot !

  • @antoinegrassi3796
    @antoinegrassi3796 2 дні тому

    J'ai bien apprécié ta méthode qui est élégante. Mais j'ai eu l'impression qu'elle demandait un peu trop de temps. Alors j'ai essayé la méthode "bourrin" qui consiste à se lancer dans des calculs. Et j'ai trouvé qu'elle était sensiblement plus courte. Dans le cadre d'un concours c'est toujours appréciable. Je te propose donc de l'effectuer par curiosité. Posons X=(rac(15)+rac(5))/rac(20), la quantité que l'on cherche à élever à la puissance 9. On obtient facilement X = (1+rac(3))/2 après avoir simplifié par rac(5). Puis X² = (2+rac(3))/2 en développant l'identité remarquable (a+b)²=(1+rac(3))² et en simplifiant. Puis X⁴ = X².X² = (7+4rac(3))/4 en développant l'identité remarquable (a+b)²=(2+rac(3))² et en simplifiant. Puis X^8 = X⁴. X⁴ = (97+56rac(3))/16 en développant l'identité remarquable (a+b)²=(7+4rac(3))² et en simplifiant. Et enfin X^9= X^8.X = (265+153rac(3))/32. En faisant le produit de (97+56rac(3))/16 par X. Simple et efficace. Il suffit de faire 5 lignes de calculs élémentaires. 😉👍

  • @hariprakash6511
    @hariprakash6511 2 дні тому

    The problem appears to have been wrongly structured from two angles. One, one of the variables has to be a negative number. Two, product is not exactly 100. Accordingly, X = 16.1803399 and Y = - 6.1803399 Verification X + Y = 10 16.1803399 + (-6.1803399) = 10 XY = 16.1803399 x (-6.1803399) = - 100. 0000001 Please correct me if I am wrong.

  • @СергейБеляев-д7с

    Корень числа 2 равен ~1,4. 1.4-1 равно 0.4. Чем выше степень, в которую возводится число меньше 1, тем все меньше и меньше число и в конце концов стремится к нулю. Вот такие бухгалтеры и работают в правительстве!!

  • @عبدالواسع-س8م
    @عبدالواسع-س8م 2 дні тому

    Great work ! Thanks so much !

  • @ludmilaivanova1603
    @ludmilaivanova1603 2 дні тому

    (5^2/2^2)^1/5= (5^2x5^3/2^2x5^3)^1/5=5/500^1/5

  • @elecbertelecbert-l5e
    @elecbertelecbert-l5e 2 дні тому

    Keep going

  • @ioannisimansola7115
    @ioannisimansola7115 2 дні тому

    Simplistic and "talkative"

    • @colt4667
      @colt4667 2 дні тому

      He belabors the simplest points. We are not idiots. I hate these overly pedantic presentations.

  • @ALEX.1R
    @ALEX.1R 2 дні тому

    In fact, sqrt(-1) has 2 roots: -i and +i.

    • @mathshunter
      @mathshunter 2 дні тому

      Square root is a function and any function can not have more than 1 values. So sqrt(-1) = i

    • @ALEX.1R
      @ALEX.1R 2 дні тому

      ​​@@mathshunterwik Imaginary uniti: There are two complex square roots of −1: i and −i, just as there are two complex square roots of every real number other than zero (which has one double square root).

  • @марьянткач
    @марьянткач 2 дні тому

    (25/4)^1/5=(200/32)^1/5=(200^1/5)/2.

  • @07Pietruszka1957
    @07Pietruszka1957 2 дні тому

    a/(i*b+a)=a/(i*b+a)*(a-i*b)/(a-i*b)=(a^2-i*a*b)/(a^2+b^2)=(a^2)/(a^2+b^2)-i*(a*b)/(a^2+b^2)= .... and show result for example for n=0: x=([ln(5)]^2-i*ln(5)*PI)/([ln(5)]^2+[PI]^2) This reduces the complex number in the denominator. Nice work.

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 2 дні тому

    Congratulations with 10K subscribers, Math Hunter. I'm your old subscriber >:D Good luck on your good future !

  • @07Pietruszka1957
    @07Pietruszka1957 2 дні тому

    And why is that? You still have two square roots to calculate.

  • @The.Last.One.Forever_2024
    @The.Last.One.Forever_2024 2 дні тому

    After you decided to use Euler's identity as a solution to the problem, I got confused - how to understand this??? Good solution, Math Hunter ;)

  • @ronaldnoll3247
    @ronaldnoll3247 2 дні тому

    x= log(2) 200/3 x=6.0589

  • @yurenchu
    @yurenchu 2 дні тому

    Let x = (√2 - 1) ==> x+1 = √2 (x+1)² = 2 x² + 2x + 1 = 2 x² = 1 - 2x x⁴ = (1 - 2x)² = 1 - 4x + 4x² = 1 - 4x + 4(1 - 2x) = 5 - 12x x⁸ = (5 - 12x)² = 25 - 120x + 144x² = 25 - 120x + 144(1 - 2x) = 169 - 408x x¹⁰ = x⁸ * x² = = (169 - 408x) * (1 - 2x) = (169 - 408x) - (338x - 816x²) = 169 - 746x + 816x² = 169 - 746x + 816(1-2x) = 985 - 2378x ... x = (√2 - 1) ... = 985 - 2378(√2 - 1) = 985 - 2378√2 + 2378 = 3363 - 2378√2