R-H Criteria (Solved Problem 2)

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ • 40

  • @LIVE_LIVELY
    @LIVE_LIVELY Рік тому +12

    H.W. problem also by shorcut method.
    Ans = 3/4 = 0.75 12:14

  • @amnaiqbal8016
    @amnaiqbal8016 2 роки тому +4

    This video really helped me in my finals.Similar question was in exam. Thanks alot. Your teaching style is tremendous.

  • @ravindrasahu8738
    @ravindrasahu8738 3 роки тому +11

    your contents are far better than other so-called gate preparation classes

    • @PunmasterSTP
      @PunmasterSTP 2 роки тому

      I'm just curious; what gate preparation classes have you used?

    • @karthikkj3421
      @karthikkj3421 3 місяці тому +1

      So true, this is direct and to the point honestly enough to do the gate questions

  • @UEI_HimadriShekharChakraborty
    @UEI_HimadriShekharChakraborty 3 роки тому +16

    H/W problem ans : K = 3/4

  • @zahidkatarya
    @zahidkatarya 2 роки тому +11

    Solution to the h/w problem is 0.75

  • @alitanik4051
    @alitanik4051 2 дні тому

    Sir , you are expert , I appreciate you and really thank you so much ,Allah razı olsun :)

  • @ano26g
    @ano26g 8 місяців тому

    God bless you ❤✨✨
    Really thankful to you. You explain far better than my tutor. And the way you explain background information properly makes things easy for even a beginner or a person who has forgotten basic concepts or a person who don't know how to use basic concepts. ❤
    Really thank you sir.

  • @PunmasterSTP
    @PunmasterSTP 2 роки тому +2

    Solved problem 2? More like "This stuff I never knew"...before I started watching Neso Academy! Thanks again for making and sharing so many amazing videos.

  • @mhz5749
    @mhz5749 Рік тому

    i think there is a shortcut method, when you get the characteristic equation, and you already know that +-2j is two of the solutions, then (s^2+4) must be a factor of the characteristic equation, you can sub in +-2j and get the coefficients of the equation, but what i did is you can deduce that the characteristic equation = (s^2+4)(s+a) by long division or otherwise, then you get K+1=4a and K+2=4 as the simultaneous equations comes from the fact that long division equals the characteristic equation is a identity.

  • @SatyamMishra-zq4mn
    @SatyamMishra-zq4mn 3 роки тому +4

    sir upload more videos of control system as soon as possible.

    • @kyawgyikyawgyi2603
      @kyawgyikyawgyi2603 3 роки тому

      qooj(o()pkiuyyy%🙂🙂🙂🙂🙂🙂

    • @ankool9794
      @ankool9794 3 роки тому +1

      Hey Do you know if this Control system playlist is worth watching to prep for Gate ECE?

  • @sanskarkumar6484
    @sanskarkumar6484 3 роки тому +3

    thanks Sir🙏❤

  • @verissakissiedu1302
    @verissakissiedu1302 2 роки тому +4

    I had K=-3/4. When I use s^2 but when you solve for s^1, K=3/4.please what is the right answer? Please help me soon

    • @nostalgic7752
      @nostalgic7752 9 місяців тому

      i didnt understand your doubt, you wont get k in negative at all, when you solve Auxillary eqn, you get k = 3/4, when you put the s^1 element of routh array you still get k = 3/4 and when you use shortcut method, you still get k=3/4

  • @LIVE_LIVELY
    @LIVE_LIVELY Рік тому +1

    11:46 Shortcut Method used for this 😂

  • @ee19gauravshrivas18
    @ee19gauravshrivas18 3 роки тому +5

    K = 0.75

  • @tarupratikshapandurang1536
    @tarupratikshapandurang1536 11 місяців тому +1

    k= 0.75
    Is this correct?

  • @abdurrahmanabdulaziz5900
    @abdurrahmanabdulaziz5900 2 роки тому +2

    ans = 3/4

  • @komalsah6010
    @komalsah6010 Рік тому +3

    K=3/4

  • @adarshsoni8226
    @adarshsoni8226 2 роки тому +1

    HW problem ans : k = 3/4

  • @sachinkotagond
    @sachinkotagond 11 місяців тому

    If the solved example is followed in this video, then the solution to Home Work problem can be obtained in 2 steps !!!
    Given, CE = 1+G(s) = s^3+ Ks^2 +4s+3=0
    We already know that frequency of oscillation is the magnitude of roots of Auxillary Equation. Given frequency is 2 rad/s.
    So, roots of AE, s = (+/-) 2j
    s^2 = -4
    Substituting s^2 = -4 in CE, we get,
    -4s -4K + 4s + 3 = 0,
    K=3/4 = 0.75 !!!!

  • @21khalid8
    @21khalid8 Рік тому +1

    can k be negative

  • @etilasamwel8862
    @etilasamwel8862 Рік тому +1

    solution 0.75

  • @mashapoguajay3322
    @mashapoguajay3322 Рік тому +3

    3/4

  • @sanjaykryadav6157
    @sanjaykryadav6157 2 місяці тому

    H.w ans 3/4

  • @aProudHinduatani
    @aProudHinduatani 2 роки тому

    Why should k can not be equal to -1......?

    • @mhz5749
      @mhz5749 Рік тому

      your question is very inspiring, i looked into it, i had some answers for that. when k=-1, the characteristic equation will be come a Type 1 transfer function's denominator which equals s(ss+as+1) and in this case, if a >=0, it WILL be a marginally stable system, however, omega, the imaginary part of the poles on imaginary axis, will never equal to +-2j, only possible condition except zero is when a = 0, this makes +-1j the j omega. that's why you dont k is not -1. furthermore, row of zeros should only appear at odd power rows of s. thats why we dont have go through all the above to prove this case is invalid.

  • @real4788
    @real4788 2 роки тому +1

    k = 0.75

  • @053_waseemahmadwani_ee3
    @053_waseemahmadwani_ee3 3 роки тому +3

    0.5

  • @saurabhchaudhari6818
    @saurabhchaudhari6818 3 роки тому +1

    k=3/2

  • @sangitadey1511
    @sangitadey1511 19 днів тому

    0.75

  • @subodhsingh9287
    @subodhsingh9287 10 місяців тому

    2

  • @abdulhaaditaufiqshaikh9176
    @abdulhaaditaufiqshaikh9176 Місяць тому

    K = 0.75