Comparing Two Gigantic Numbers

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 16

  • @gauravraj3945
    @gauravraj3945 7 місяців тому +2

    Thanks

  • @Afra-p9l3
    @Afra-p9l3 7 місяців тому +3

    This is really cool.

  • @scottleung9587
    @scottleung9587 7 місяців тому +1

    Very cool!

  • @matheusjahnke8643
    @matheusjahnke8643 7 місяців тому +1

    I think I've seen quite a few with those problems;
    Stirling approximation: log(n!)~ n log n
    (using log as the natural logarithm)
    (more like log(n!)=n log n - n + O(log(n))).... but we aren't going to be so careful)
    instead of comparing 2^(24!) and (2^24)!... compare their logs
    A=log (2^(24!))=24! log 2
    B=log ((2^24)!)=2^24 log (2^24)=24(2^24)log 2
    turns out 24! > 24(2^24)... so A = 24! log 2 > 24(2^24)log 2 = B
    (to do that you can do the same reasoning used on the video... 23! > 2^23)

  • @vincehomoki1612
    @vincehomoki1612 7 місяців тому +3

    2^24 = 16,777,216.

    • @narfharder
      @narfharder 6 місяців тому

      True color nerds be like

  • @yoav613
    @yoav613 7 місяців тому +2

    Nice and very easy😊

    • @robertveith6383
      @robertveith6383 7 місяців тому +2

      Thumbs-down on your "very easy" comment. If it were "very easy," it would not be taking the host seven minutes, 40 seconds to explain his method in the video.

    • @yoav613
      @yoav613 7 місяців тому +1

      @@robertveith6383 well,wehen i say very easy i mean it is very easy to me.i can explain it in 1 min: (2^24)!(2^24)!.

    • @robertveith6383
      @robertveith6383 7 місяців тому +3

      ​​​​@@yoav613-- Your third and fourth lines are not clear in the writing. I think they are clear to you in your mind.

  • @scottbilger9294
    @scottbilger9294 7 місяців тому +3

    Is there a solution for 2^x! = (2^x)! ?

    • @stephenlesliebrown5959
      @stephenlesliebrown5959 7 місяців тому +1

      Yes indeed, the graphing site desmos shows us where 🙂

    • @scottbilger9294
      @scottbilger9294 7 місяців тому +1

      @@stephenlesliebrown5959 Thank you

    • @HoSza1
      @HoSza1 6 місяців тому

      x=1. no graphing needed for that

  • @129140163
    @129140163 7 місяців тому

    5:37 The exact value of 2^24 is 16,777,216.
    Therefore (2^24)! is 16,777,216!
    So the comparison can be written as 2^(24!) vs 16,777,216!.

  • @Afra-p9l3
    @Afra-p9l3 7 місяців тому +1

    1st comment