Orthogonality and Orthonormality

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 81

  • @isxp
    @isxp 4 роки тому +59

    Good god, I wish I found this 8 weeks ago. The drop date for classes is the 30th. I ended up with 6% on my first midterm in Mathematical Physics. This class will haunt till the day I die. I'll probably know this material better than any of the classes I've taken, as I'll likely obsess over it for months.

    • @kartikkalia01
      @kartikkalia01 3 роки тому +3

      I'm at same situation as yours, please suggest similar videos/playlist.

    • @mohammedbastaki2101
      @mohammedbastaki2101 10 місяців тому +1

      same here pal

  • @pkasb90
    @pkasb90 4 роки тому +197

    I must say your lecture supercedes those in higher institutions.

  • @tadabae
    @tadabae 3 роки тому +76

    my final exam is in 15 minutes and i stumbled across this channel. he explains this so clearly!! i wish i found this channel earlier omg

    • @beams9497
      @beams9497 2 роки тому +1

      Haha saaaame

    • @macdonaldnnadi
      @macdonaldnnadi 2 роки тому +25

      15 minutes is crazy dawg

    • @SneakoV2
      @SneakoV2 2 місяці тому

      @@macdonaldnnadi the commenter is my friend and sadly passed away a year before your reply

    • @macdonaldnnadi
      @macdonaldnnadi 2 місяці тому +1

      @@SneakoV2 wow. I hope his family and friends (including you) find peace fr

    • @SneakoV2
      @SneakoV2 2 місяці тому

      @@macdonaldnnadi thank you

  • @Bruhhhhhhhhhhhhhhhhhhhhhh
    @Bruhhhhhhhhhhhhhhhhhhhhhh 3 роки тому +10

    3:05 "four SQUARED plus two SQUARED plus negative one squared" lol im dying and good vid overall

  • @lingwaili1203
    @lingwaili1203 4 роки тому +16

    Thank you so much! Professor Dave explains clearly so I can finally understand orthogonal

  • @ddiverr
    @ddiverr 4 роки тому +11

    clean, informative, and concise video, thanks guy

  • @bluefenix1457
    @bluefenix1457 7 місяців тому +2

    This explained it so well for me, you spoke clearly and didn't do messy sentences, and even paused after every sentence to process it 👏👏👏👏👏👏

  • @user-rx9sj8mk8s
    @user-rx9sj8mk8s 3 місяці тому +3

    This series is the easiest way to understand linear algebra. College professors get paid to teach this but they can't explain jack sh*t. Seriously this holds up today too.

  • @missghani8646
    @missghani8646 4 роки тому +9

    can't thank you enough for this clear explaination

  • @ayazohdy6221
    @ayazohdy6221 5 років тому +27

    Professor Dave explains 😂💕

  • @JoseLopez-op7sq
    @JoseLopez-op7sq 8 місяців тому

    A lot of good information in one short video; good overview.

  • @jacklion109
    @jacklion109 Місяць тому

    Thank you for the help. Saved me on my final for tomorrow.

  • @apythonprogrammer7877
    @apythonprogrammer7877 8 місяців тому

    This really helped me understand LLM model quantization just a tiny bit better

  • @banderallogmany1912
    @banderallogmany1912 4 роки тому +4

    3:52 I didn't get how the length becomes 1!

  • @janakamohotti
    @janakamohotti 2 роки тому +2

    Brilliant explanation!!! ❤️

  • @kidatheart4975
    @kidatheart4975 4 роки тому +6

    I'm confused on the orthonormal part. There are 2 conditions for orthonormal vectors: (1) orthogonal; and (2) the length is 1. But the example on 2:56, the length is not 1 that negate the conditions of being an orthonormal. Can you please elaborate that part? Thanks

    • @criclal1787
      @criclal1787 3 роки тому +5

      Those vectors displayed at 2:56 are not orthonormal, we have converted them both to unit vectors and made them orthonormal thus.

    • @wealthy_concept1313
      @wealthy_concept1313 2 роки тому

      @@criclal1787 but if that's the case it means any vector can be converted to orthonormal at will ?

    • @MuffinsAPlenty
      @MuffinsAPlenty 2 роки тому +3

      @@wealthy_concept1313 Any set of vectors can be "normalized" (meaning to make the lengths of all of the vectors 1). This does not, at all, change the angles between any of the vectors.
      The Gram-Schmidt Process (the next video in the playlist) shows us that any _linearly independent_ set of vectors can be made orthogonal without changing the span of the set.
      Taken together, given any basis, we can always find an orthonormal basis by first using the Gram-Schmidt process to make the basis orthogonal without changing its span, and then we can "normalize" the orthogonal set to make it orthonormal.

  • @rodab3546
    @rodab3546 5 років тому +3

    you explain so good

  • @jainpravachan650
    @jainpravachan650 4 роки тому +3

    Thanks sir.... wonderful lecture

  • @건건-r7m
    @건건-r7m 3 роки тому +2

    thanks for awesome explanations!!!

  • @raihansk5971
    @raihansk5971 5 років тому +2

    Amazing!!.........Explaination is awesome.....

  • @manishbhatia2724
    @manishbhatia2724 4 роки тому +1

    Beautiful Explanation

  • @jisaburo198
    @jisaburo198 4 роки тому +1

    EXCELLENT videos! Thank you so much

  • @AqibHussain-u1y
    @AqibHussain-u1y 8 місяців тому

    Amazing explanation

  • @colingillespie7635
    @colingillespie7635 4 роки тому

    The intro alone earns my like

  • @mehuladhrit7883
    @mehuladhrit7883 4 роки тому +1

    Very nicely taught...

  • @Robert-gr1cl
    @Robert-gr1cl 9 місяців тому

    such good explanations, thanks

  • @Dixxi91
    @Dixxi91 2 роки тому

    Very good explanation, thank you

  • @mona5112
    @mona5112 4 роки тому +4

    Hello Professor and Thanks for your great explanations.
    I was wondering why do not we have something called orthonormal matrices ??
    and think orthogonal matrices are more like orthonormal ones!! :))

  • @blakeelzinga1168
    @blakeelzinga1168 3 роки тому

    Thank you for this video

  • @adefisanadedotun797
    @adefisanadedotun797 8 місяців тому

    Very understood
    Thank you

  • @tknam3278
    @tknam3278 3 роки тому +1

    This is perfect!

  • @deathworld5253
    @deathworld5253 5 років тому +3

    Isn't orthagonality defined by having the dot product equal to null element in Euclidian space?

    • @yogsothoth2194
      @yogsothoth2194 5 років тому +1

      I think null just means nothing; or in mathematical terms 0 . So yeah you're probably right

  • @aniketgupta5750
    @aniketgupta5750 4 роки тому +1

    Elaborate to some extent, I mean your beginning and laying down the foundation of the topic is good but should stretch it till good level.
    Atleast that's what I feel missing in your videos, do please consider this if you see this comment.
    By the way I love your videos from quantum numbers to biomolecules all are awesome.

  • @glennveniceaboy8876
    @glennveniceaboy8876 4 роки тому

    your convention for magnitude of a vector is a bit confusing because the single bar on both sides is usually for absolute value, maybe you should've used double bars for it
    anyways, i learned a lot, thanks!

    • @carultch
      @carultch Рік тому

      Absolute value and magnitude of a vector have so much in common, they might as well use the same notation. I thought the double bars on both sides was completely unnecessary, when I was first introduced to the notation, after having become accustomed to just using the single pair of bars.

  • @ManojKumar-cj7oj
    @ManojKumar-cj7oj 4 роки тому +1

    Inverse of orthogonal matrix = tranpose of matrix

  • @inspirationalquotes5840
    @inspirationalquotes5840 Місяць тому

    but how they are orthonormal if their lengths are square root of 21 and square root of 14, where they should be 1

  • @umehmoses8118
    @umehmoses8118 2 роки тому

    I love the professor 😁

  • @suvarnamanojsingh
    @suvarnamanojsingh 4 роки тому

    thanks that was helpful

  • @desrepeerc206
    @desrepeerc206 2 роки тому +1

    3:23 Nice frankenbiting skills xD

  • @lamdawave
    @lamdawave 2 роки тому

    Good video. One question: If a square matrix has orthogonal column vectors. its inverse is not equal to its transpose. what should we call this type of matrices?

  • @salmakhaled2397
    @salmakhaled2397 4 місяці тому

    What is the w function at the end of the video?

  • @jds189
    @jds189 4 роки тому

    what happened to the visuals clarifications? its been primarily plug and chug for most of linear algebra..

  • @mcalkis5771
    @mcalkis5771 2 роки тому

    Could someone elaborate on the weight functions? Is it just a correction factor so that a function can be orthogonal with respect to another?

  • @rushdisami5146
    @rushdisami5146 2 роки тому

    Finally I understood Orthogonality.🤖

  • @marcosramirez2278
    @marcosramirez2278 3 роки тому

    I found this channel because of flat earth videos, never did I guess this man would save my math grade

  • @kryptoid2568
    @kryptoid2568 3 роки тому

    sir, the inner product notation reminds me of bra-ket notation

  • @prakashraj4519
    @prakashraj4519 4 роки тому

    video on caley hamilton

  • @Gafa996Gaddisa
    @Gafa996Gaddisa 5 років тому

    Is Ortho Greek word which means , straight up?

    • @georgesimos4914
      @georgesimos4914 5 років тому +1

      "ορθό-ς" is used for other cases too; the one you say is one definition, but the one required for the concept of the video is "vertical"(an example is the mathematical expression "ορθή γωνία"="right angle")

    • @carultch
      @carultch Рік тому

      @@georgesimos4914 Even though I know that 3 out of 4 of the letters have completely different pronunciations, I instinctively read "ορθή" as "open". Even though I know it would sound more like "orthi".

  • @srinityapadma5125
    @srinityapadma5125 4 роки тому

    Thank you so much Sir.../\

  • @jaliyahkane5127
    @jaliyahkane5127 3 роки тому +1

    professor dave is an AI

  • @kaanylmaz1008
    @kaanylmaz1008 3 роки тому

    eyw reis

  • @LivLiv-h4z
    @LivLiv-h4z Рік тому

    TE DUA

  • @garyallen538
    @garyallen538 5 років тому +4

    Yeah but....what does this have to do with birds? (Sorry, couldnt resist!)

  • @rayandharia1718
    @rayandharia1718 Рік тому +1

    CHEMISTRY JESUS CUT HIS HAIR

  • @anandailyasa2530
    @anandailyasa2530 4 роки тому

    ❤️❤️❤️❤️❤️