Real Analysis 30 | Continuous Images of Compact Sets are Compact

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 10

  • @stat5web
    @stat5web 3 роки тому +5

    This is pure gold. Thanks for the opportunity to learn from you.

  • @joaofrancisco8864
    @joaofrancisco8864 3 роки тому +2

    Simple and elegant proof. Very nice!

  • @dhananjaytudu6864
    @dhananjaytudu6864 2 роки тому +1

    Most wonderful video ❤️❤️

  • @HungDuong-dt3lg
    @HungDuong-dt3lg 3 роки тому +1

    Thanks a lot!! :)

  • @HoloBoss
    @HoloBoss 3 роки тому +2

    Ich finde das Bild im Thumbnail EXTRAM gut, das erklärt eig schon alles =D

  • @chair547
    @chair547 3 роки тому

    Seems like to find a counterexample you find some continous function f. Define f' to be f when f =/= sup and 0 when it is. Because it's a continuous function you can find points in the image of f arbitrarily close to sup f so sup f' = sup f, but sup f is not in f' because we removed it.

  • @jerjerhung131
    @jerjerhung131 Рік тому

    is it called extreme value thm?

  • @hyperduality2838
    @hyperduality2838 2 роки тому +1

    Generalization is dual to localization.
    Minimum is dual to maximum, infimum is dual to supremum.
    Convergent (syntropy) is dual to divergent (entropy) -- the 4th law of thermodynamics!
    Points are dual to lines -- the principle of duality in geometry.
    "Always two there are" -- Yoda.