Chebyshev Polynomials | Theory & Practice

Поділитися
Вставка
  • Опубліковано 8 жов 2024

КОМЕНТАРІ • 8

  • @bradlanducci9011
    @bradlanducci9011 Рік тому +2

    Very informative, thanks!

  • @imeric7817
    @imeric7817 Рік тому +1

    Great video with nice examples!

  • @karla1995ize
    @karla1995ize 8 місяців тому

    Excelente contenido Bro

  • @justinsostre8470
    @justinsostre8470 Рік тому +2

    The reason your recursion is slow is because you used a naive approach instead of, perhaps, tail recursion.

    • @LaplaceAcademy
      @LaplaceAcademy  Рік тому +1

      But anyways, there always exists a faster way than recursion of any type.

    • @holyshit922
      @holyshit922 Рік тому

      @@LaplaceAcademy there exists formula for Chebyshov polynomials
      Here is how i found it
      1. From cosine of sum and cosine of difference derive recurrence relation for Chebyshov polynomials
      2. Define exponential generating functiom
      3. Plug it in recurrence relation
      4. Solve nonhomogeneous linear differential equation of second order with constant coefficients and initial conditions
      (Here suitable method is Laplace transform in my opinion)
      5. Calculate second derivative of solution of thiequation in step 4
      6. Use Leibniz product rule to calculate nth derivative of exponential generating function of Chebyshov polynomial and evaluate it at zero
      After these steps we should get
      T_{n}(x) = sum({n \choose 2k}x^{n-2k}(x^2-1)^k,k=0..floor(n/2))
      If we use binomial expansion to the (x^2-1)^k we will get
      T_{n}(x) = sum(binomial(n,2k)x^{n-2k}sum(binomial(k,m)x^{2m}(-1)^{k-m},m=0..k),k=0..floor(n/2))
      So we will get double sum
      T_{n}(x) = sum(sum((-1)^{k-m}binomial(n,2k)binomial(k,m)x^{n+2m-2k},m=0..k),k=0..floor(n/2))
      But how to calculate further
      I'm sure that it is possible to get single sum for all coefficients of Chebyshov polynomial
      but i dont know how to do it