Primes and Equations | Richard Taylor

Поділитися
Вставка
  • Опубліковано 3 лют 2025

КОМЕНТАРІ • 17

  • @fengguan7444
    @fengguan7444 3 роки тому +1

    such a good lecture to let non-expert to get some sense of number theory

  • @stereosphere
    @stereosphere 7 років тому +1

    14:07 Another Diophantine Problem
    Dr Taylor is scaling the radius by 999999/1000000 which has the effect or scaling x and y by the square root of 999999/1000000, an irrational number. If he scaled by the square root of 9999999/1000000, the rational numbers would reappear. The slide he skips over at 15:09 shows how a circle can be formed from rational coordinates, as long as the radius is a perfect square.
    s = 0.999999
    q = sqrt(0.999999)
    x^2 + y^2 = 1
    s*x^2 + s*y^2 = s
    (q*x)^2 + (q*y)^2 = s
    If x is rational, q*x is irrational. Same for y.

  • @marcderiveau9307
    @marcderiveau9307 5 років тому

    Table at 26:00 shows the solutions for p=41 are13 and 29. It should have written 13 and 28.

  • @paul1964uk
    @paul1964uk 12 років тому +3

    Interesting topic. Didn't think all the connections were sufficiently clearly made however. Still kudos to the Prof for giving a talk as accessible as this was.

  • @evid-rz3nu
    @evid-rz3nu Рік тому

    25:40----i see a pattern that is 11=4+7. 11/2>4>under root11 And11/2 under root 11 19=9+10. 19/2>9>under root19 and 19under root 19. And so like this

  • @geraldillo
    @geraldillo 4 роки тому +1

    Good video, small mistake in the table at 24'30"; 29 squared is 21 (mod 41)

  • @gurmeet0108
    @gurmeet0108 8 років тому +1

    At 30:35, you used the reciprocity law wrongly, it should be "x^2 = 7 modulo 12".

  • @chrisholding2382
    @chrisholding2382 4 роки тому

    @25:45 I see an alternative pattern through primes which is amazing :)

  • @naimulhaq9626
    @naimulhaq9626 10 років тому

    Extremely illustrative of the topic, thank you very much. Gauss' reciprocity law implies not only Wiles but a host of properties of numbers !!! Amazing, how numbers can be mesmerizing !!!
    There are less and less primes as n increases and at infinity there are none.

  • @aileenwu1362
    @aileenwu1362 9 років тому +1

    great job by a great professor! this really cleared up a bunch of concepts ... love that he included so many examples!

  • @robkim55
    @robkim55 11 років тому

    in fact it is possible to find an algorithm to solve quadratic equations the congruent number problem is a special case.

  • @123must
    @123must 11 років тому +1

    Thanks !

  • @evid-rz3nu
    @evid-rz3nu Рік тому

    Love from India

  • @erikcools891
    @erikcools891 9 років тому

    waw ! interesting stuff.

  • @AdrianReef
    @AdrianReef 12 років тому +1

    it's hard to explain the stuff you don't know about...

  • @carolinemurgue8170
    @carolinemurgue8170 4 роки тому