AI as an API - Part 1 - Train an ML Model and turn it into an Rest API using Keras, FastAPI & NoSQL

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 67

  • @CodingEntrepreneurs
    @CodingEntrepreneurs  3 роки тому +4

    Part 2 is up! ua-cam.com/video/nTdMjFcK3SM/v-deo.html

  • @brandypiao5682
    @brandypiao5682 3 роки тому +1

    Only 42 mins in and I know you're a life saver

  • @SanjeevKumar-nc2rt
    @SanjeevKumar-nc2rt 3 роки тому +3

    I am going to watch whole video in 2 days. I am sure i am going to learn everything you taught in this video.. i will comments again my feedback after completion.😊😌

  • @abrarshahid3930
    @abrarshahid3930 3 роки тому +1

    We are loving your FastAPI and Cassandra videos!! We want more......

  • @amazing-graceolutomilayo5041
    @amazing-graceolutomilayo5041 3 роки тому +1

    OH MY GOD!... I just saw this on my recommended. I have not seen any video yet. SUBBED!!!. I hope to learn more as I dig in

  • @alihusham1560
    @alihusham1560 3 роки тому +4

    Man, after I learned from your tutorials I got a job on upwork thank you

  • @MrAntivirus66
    @MrAntivirus66 3 роки тому +2

    Sick tutorials recently.. thanks programing brother 🧬

  • @Sam98961
    @Sam98961 2 роки тому +1

    Such a great tutorial! Can't wait to start part 2 tomorrow. Thanks so much man.

  • @OnceARider
    @OnceARider 3 роки тому +1

    Nice content to pass the weekend. Thanks!

  • @robinsvantony
    @robinsvantony 3 роки тому +1

    Started ML ... Thank you.

  • @mihirpesswani5044
    @mihirpesswani5044 3 роки тому +20

    Please make a tutorial for OpenCV AI model with Django Rest API too.

    • @michas7993
      @michas7993 3 роки тому +1

      Yeah, that’s right!

  • @onlyyou200548
    @onlyyou200548 3 роки тому +3

    FYI, model.predict is not thread-safe and hence, cannot be usef within fastAPI like that. A correct way is to use tensorflow serving

  • @TheHunterhal
    @TheHunterhal 3 роки тому +3

    Thank you, haven't watched it yet but liked it, I will watch it this weekend and run the codes using Pytorch maybe image models (if possible) :).

    • @cedricvillani8502
      @cedricvillani8502 3 роки тому

      Really? You’ll have to let us all know how that worked out, I’m kind of curious

  • @prashantmorgaonkar3095
    @prashantmorgaonkar3095 2 роки тому

    Great work, lucid !

  • @lambdamax
    @lambdamax 3 роки тому +1

    Thank you so much for doing this! There is hope in this sad world!

  • @BeattapeFactory
    @BeattapeFactory 3 роки тому +2

    That sounds like a really cool idea. Thank you

  • @shashanksathish9362
    @shashanksathish9362 3 роки тому +2

    This video taught me a lot, right from the best practices in Data Engineering/Data Science. However, I could not able to assimilate the use of AI as an API. I had built an AI project with front-end thus I could see the results directly, I would be glad to know the use case of the AI as an API like where this can be used. Apologies, if the question doesn't make sense.

    • @CodingEntrepreneurs
      @CodingEntrepreneurs  3 роки тому +2

      Great question!
      This api can be used in nearly *any* service. This means regardless what your front end or backend is, you can probably use this API.
      For example, if you have 4 different web applications, they can all use this API to provide predictions for the content.
      You can see this in action on my Try Django 3.2 series where we integrate Django with an AI microservice.

    • @shashanksathish9362
      @shashanksathish9362 3 роки тому +1

      @@CodingEntrepreneurs Makes sense, perfect. Thanks!

  • @agungokill
    @agungokill 3 роки тому

    straightforward, nice!

  • @MrTarekTV
    @MrTarekTV 3 роки тому +1

    Thank you for your valuable information, I appreciate your efforts, wish you the more success and the best

  • @frederickmai
    @frederickmai 3 роки тому +1

    Long time no see!

  • @siuu3155
    @siuu3155 3 роки тому +3

    Please make a tutorial on machine learning for beginners

  • @akashthoriya
    @akashthoriya 3 роки тому +2

    Thank you sir

  • @harshprateek8045
    @harshprateek8045 3 роки тому +1

    Great content....

  • @akashthoriya
    @akashthoriya 3 роки тому +2

    Sir, when we expect part 2 of this video?
    Description link says, private video.
    Please update sir

  • @tatg09
    @tatg09 Рік тому +1

    Thanks!

  • @nepalcodetv6298
    @nepalcodetv6298 3 роки тому +1

    Gold Content

  • @krzysztofgalus3886
    @krzysztofgalus3886 3 роки тому

    Great video 😎

  • @Tommybotham
    @Tommybotham Рік тому

    This is frustrating to follow as I'm encountering a:
    "WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available."
    Error.
    I'm using VS Code from Anaconda.

  • @shikunchen8523
    @shikunchen8523 3 роки тому +1

    Thank you for this wonderful video. I followed your tutorial, it worked fine. But for the function "export_inferences", the fastAPI docs gave me "Unrecognized response type; displaying content as text.", the dataset can't be showed. Do you have any idea why it happend?

    • @CodingEntrepreneurs
      @CodingEntrepreneurs  3 роки тому

      Perhaps turn your stream response into a string.
      Also thank you!

  • @lllllMlllll
    @lllllMlllll 3 роки тому

    Ah UCL .. The university that nearly drove me crazy doing a master degree :)

  • @cedricvillani8502
    @cedricvillani8502 3 роки тому

    IEEE dataport datasets are also fun and interesting, just FYI

  • @brunoluan
    @brunoluan 3 роки тому

    What if I need the user to upload his dataset, choose the model and then get back the model trained? How I would do that?

  • @vipulsharma9094
    @vipulsharma9094 2 роки тому

    The model is predicting everything as ham . i have followed each step in this video but the problem presists can anyone help me.
    The model itself at google colab is giving this result.

  • @mehdismaeili3743
    @mehdismaeili3743 2 роки тому

    like like like.......😍

  • @aloudiakite1217
    @aloudiakite1217 3 роки тому

    Amazing tutorial, can you please make a tutorial on machine learning pipeline with datasets storage in Cassandra?

  • @markakritas8047
    @markakritas8047 3 роки тому +1

    Thanks for very useful tutorial!
    Is there a free object storage available that will work also with boto3? Because as far as I understood all of three suggested solutions charge at least 5 $ / month, and it's unwanted to make an expense just for few files and testing purposes.

  • @isurumadusanka1590
    @isurumadusanka1590 3 роки тому

    Hi! Thanks for the huge tutorial. Eagerly waiting for the part 2. For some reason, part two link is not accessible (private link).

  • @hazelnicolettemanners53
    @hazelnicolettemanners53 2 роки тому

    Why have u chosen fast api over django?

  • @leonli5970
    @leonli5970 3 роки тому +1

    amazing video. MLops is silver bullet

  • @gabrielvl1
    @gabrielvl1 3 роки тому +1

    Awesome ... +1000(y)

  • @dsdy1205
    @dsdy1205 3 роки тому +1

    I read this as "Alas, an API"

  • @HugoCoolDude
    @HugoCoolDude 3 роки тому +1

    okay... so why not pytorch, kedro and bentoml (and mlflow), that's waayyy easier than coding all stuff by hand, just watching this video was exhausting let alone coding all that by hand:p

    • @cedricvillani8502
      @cedricvillani8502 3 роки тому

      To people that don’t have experience with higher level math like linear algebra, or algebraic combinatorics
      (Stochastic gradient dissent should be a concept that you know inside and out ) then this is not your video, if you’re looking for a quick fix go to hugging face there you can use sckitlearn and gardio

  • @vjukulkarni6057
    @vjukulkarni6057 3 роки тому

    Can we get the code ?

  • @HM_Milan
    @HM_Milan 3 роки тому

    I make with this idea hehe but I didn't know how to

  • @FirstNameLastName-fv4eu
    @FirstNameLastName-fv4eu 3 роки тому +1

    Everyone teaching ML but no one knows how to earn money from it

    • @nepalcodetv6298
      @nepalcodetv6298 3 роки тому

      you can use above api in comment system to approve and unapprove spam comments automatically based on percentage, make money selling feat or make softw like Disqus comment, duh ML, AI is future...

    • @FirstNameLastName-fv4eu
      @FirstNameLastName-fv4eu 3 роки тому

      @@nepalcodetv6298 who will buy that ? Google is it ?