How to Deploy ML Solutions with FastAPI, Docker, & AWS

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 40

  • @ShawhinTalebi
    @ShawhinTalebi  6 місяців тому +1

    More on Full Stack Data Science👇
    👉Series Playlist: ua-cam.com/play/PLz-ep5RbHosWmAt-AMK0MBgh3GeSvbCmL.html
    💻Example Code: github.com/ShawhinT/UA-cam-Blog/tree/main/full-stack-data-science/ml-engineering

  • @FREAK-st6kk
    @FREAK-st6kk 3 місяці тому +5

    One of the best aspects of AWS Elastic Cloud is how seamlessly everything comes together, whether you're using FastAPI or Docker. It's all integrated beautifully.

  • @waleedashraf9t
    @waleedashraf9t 8 днів тому +1

    One of the best video available. on the internet for deployment.

  • @divyanshtripathi4867
    @divyanshtripathi4867 5 місяців тому +4

    This is such a great video, no nonsense straight to the point!

  • @jonathankerr2479
    @jonathankerr2479 8 днів тому

    Fantastic video. Thank you for this!

  • @tusharrohilla7154
    @tusharrohilla7154 20 днів тому

    It was amazing ...love this type of content❤

  • @Coret-with-c
    @Coret-with-c 2 місяці тому +1

    Super detailed explanation, thank you!

  • @miraclechijioke1213
    @miraclechijioke1213 2 місяці тому

    This was so simplified. thank you Shawhin

  • @rahulkrishna3043
    @rahulkrishna3043 4 дні тому

    great video ! very informative . Thanks a lot :)

  • @pawe5560
    @pawe5560 6 місяців тому +5

    Hey Shawn, videos on FastAPI and Docker from you would be great.

    • @ShawhinTalebi
      @ShawhinTalebi  6 місяців тому

      Thanks for the suggestion! I'll add it to my queue :)

  • @nocomments_s
    @nocomments_s 2 місяці тому

    I like your video, it deserves much more views

  • @brianmorin5547
    @brianmorin5547 6 місяців тому

    This is fantastic stuff as I’m pulling out my hair on this same step.
    You have the right idea for the next video, but I think the next one after that is making the chat interface publicly accessible

    • @ShawhinTalebi
      @ShawhinTalebi  6 місяців тому

      Great suggestion Brian! There are several ways one can do this. The simplest and cheapest would be hosting it via HuggingFace Spaces: huggingface.co/spaces/launch
      However, for this specific use case the most practical option would be to embed it into my Squarespace website. I'll need to do some more digging to see the best way to do that.

    • @brianmorin5547
      @brianmorin5547 6 місяців тому

      @@ShawhinTalebi The streamlit cloud has been my go-to so far. I am toying with creating a react front end template but would like to see what others are doing

  • @pedro.henrique-k5z
    @pedro.henrique-k5z 10 днів тому

    Hi! Great video! Thanks for sharing with us! Do you have any recommendation on what to study next to learn more about these topics or to go deeper in it?

    • @ShawhinTalebi
      @ShawhinTalebi  7 днів тому

      Happy to give recs. What's your end goal?

  • @dhirajkumarsahu999
    @dhirajkumarsahu999 6 місяців тому +1

    Thank you so much, such videos are really very helpful

  • @RatherBeCancelledThanHandled
    @RatherBeCancelledThanHandled 2 місяці тому +1

    well done , Thanks !

  • @fatimayousaf1644
    @fatimayousaf1644 2 місяці тому +1

    Hey Shaw!
    what a beautiful content. I followed all the steps from ML APP from scratch till deployment but at last moment, I don;t have AWS free tier account as they still ask to enter the debit card details for having free access, so can you please tell me another way round to cope up with this ?

    • @ShawhinTalebi
      @ShawhinTalebi  Місяць тому

      Glad you liked it! You could try deploying to railway (railway.app/). I just used them for a project and don't think I needed to input credit card info.

  • @ilyesbouzidi7837
    @ilyesbouzidi7837 3 дні тому

    i have been following this video, and everything went perfectly fine, until the container deployment on AWS (i think because I am working with an LLM and therefore i need GPU)
    what should i do in this situation?

    • @ShawhinTalebi
      @ShawhinTalebi  15 годин тому

      Self-hosting LLMs can get tricky. I'd recommend using an API like OpenAI, TogetherAI, or the like if possible.

  • @Smrigankiitk
    @Smrigankiitk 2 місяці тому

    how can we integrate streamlit to make the UI to get input and send to model and display the output here ?

    • @ShawhinTalebi
      @ShawhinTalebi  2 місяці тому

      Good question. This should be similar to the Gradio example shown 25:54.
      This blog post might be helpful: blog.streamlit.io/create-a-search-engine-with-streamlit-and-google-sheets/

  • @angieyoon9900
    @angieyoon9900 5 місяців тому

    Thank you!

  • @paulohss2
    @paulohss2 2 місяці тому

    Great tutorial... Im still not able to connect to the API unfortunately (This site can’t be reached,refused to connect.) even though I followed the network config steps you explained...

    • @ShawhinTalebi
      @ShawhinTalebi  Місяць тому

      To confirm, you added inbound rules in the VPC dashboard to allow all incoming traffic from your IP?
      Does the IP listed in the inbound rules match yours?

  • @rameshbabu2085
    @rameshbabu2085 5 місяців тому

    I have a DL model which takes about 5 mins and 3gb GPU to process the query and to return result. I need to handle 5 queries per minute and I have a GPU with 8gb in GCP. How can I deploy such a model without memory leakage and I should be able to use the GPU at its full potential?

    • @ShawhinTalebi
      @ShawhinTalebi  5 місяців тому

      How big is that model? Do you have GPU parallelization enabled?
      If it takes 5 min and 3GB to do one query with parallelization, the model may be too big to meet those technical constraints.

  • @ax5344
    @ax5344 Місяць тому

    where does K8S fit in in this pipeline?

    • @ShawhinTalebi
      @ShawhinTalebi  Місяць тому

      Good question. In my experience, Kubernetes is rarely used in DS/ML, so I wouldn't worry learning it if your just getting started.

  • @thonnatigopi
    @thonnatigopi 5 місяців тому

    Bro create a video for handling post and get request and multiple endpoints using fast api dockerize and ECR and aws lambda functions

    • @ShawhinTalebi
      @ShawhinTalebi  5 місяців тому

      Great suggestion. I'll add that to my list!

  • @abbasrabbani7665
    @abbasrabbani7665 6 місяців тому

    that was an awesome video, I have a task for one click ml model deployment on aws, azure and GCP, like one click on aws and other click on azure. CAn u please guide me shortly the roadmap...!

    • @ShawhinTalebi
      @ShawhinTalebi  6 місяців тому

      Thanks for your comment. Sorry I'm not sure what you mean by "one click ml model deployment". Could you share more details?

  • @vivekasthana12345
    @vivekasthana12345 2 місяці тому

    Thank you Shaw for making so many amazing videos. quick question from this video.. where exactly are you making a connection between your dockerhub and AWS ECS? Is it where you mention the url of the image? what if someone has a similar image name (shawhint/yt-search-demo) or that's not possible? Sorry if its a dumb question 😐

    • @ShawhinTalebi
      @ShawhinTalebi  2 місяці тому

      Good question! Yes, exactly. No one will have a similar image name because the first part will be your unique DockerHub username.