A Complex Log Equation with Natural Log

Поділитися
Вставка
  • Опубліковано 8 лют 2025
  • 🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts).
    Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
    / @sybermathshorts
    / @sybermath
    ⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
    My merch → teespring.com/...
    Follow me → / sybermath
    Subscribe → www.youtube.co...
    ⭐ Suggest → forms.gle/A5bG...
    If you need to post a picture of your solution or idea:
    in...
    #ExponentialEquations #ComplexNumbers #Logarithms
    via @UA-cam @Apple @Desmos @NotabilityApp @googledocs @canva
    A Complex Exponential Equation | iˣ = 2: • A Complex Exponential ...
    A Quick and Easy Exponential Equation | iˣ = 1: • A Quick and Easy Expon...
    A Nice Exponential Equation | iˣ = e: • A Nice Exponential Equ...
    1/ln(x)=-i/2npi
    PLAYLISTS 🎵 :
    Number Theory Problems: • Number Theory Problems
    Challenging Math Problems: • Challenging Math Problems
    Trigonometry Problems: • Trigonometry Problems
    Diophantine Equations and Systems: • Diophantine Equations ...
    Calculus: • Calculus

КОМЕНТАРІ • 23

  • @gregorysmathchannel5357
    @gregorysmathchannel5357 Рік тому +3

    Since the natural logarithm is not defined for nonreal inputs you should use the extended function log(a + bi)= ln(a^2 + b^2) + i*argument of (a+bi)

    • @Jack_Callcott_AU
      @Jack_Callcott_AU Рік тому

      @gregorysmathchannel5357 I think you should have it √(a^2+b^2) or (ln(a^2+b^2))/2. 🖱👍

  • @lawrencejelsma8118
    @lawrencejelsma8118 Рік тому

    A great problem stumping 95% of the students. Thumbs up for your humor today almost catching me in that infinite circular wheel spot who said, "That is definitely not me there n= 0 defining my location, not there also at n not equal to 0 (3:20 in the video hint 🤣😂). So x can never say I was not x at n = 0 ohhh no! Okay n=1, 2, 3, ... , 100, ... Hurry up it's not me ... Take the dang ln(x) so I can prove it wasn't me mathematics. 😂

  • @moeberry8226
    @moeberry8226 Рік тому +2

    Now we know what infinity looks like as a finite number.

    • @SyberMath
      @SyberMath  Рік тому

      A beautiful comment!!! 🧡🧡🧡

    • @moeberry8226
      @moeberry8226 Рік тому

      @@SyberMath lol thanks no problem.

  • @sergeyshchelkunov5762
    @sergeyshchelkunov5762 Рік тому +1

    Yes, analitical expansions of even simple functions can yield amazing results. Bravo!

  • @gregorysmathchannel5357
    @gregorysmathchannel5357 Рік тому +1

    I made a mistake. The formula should be log(a + bi)= ln((a^2 + b^2)^0.5) + i*argument of (a+bi). In other words take the natural log of the modulus of the complex number and add i times the argument of the complex number.

  • @Paul-222
    @Paul-222 Рік тому

    This isn’t any shorter but it also works.
    1 / ln x = -i / 2n(pi)
    ln x = 2n(pi) / -i = 2n(pi)i
    (ln x) / 2n(pi)i = 1
    ln x^[1 / 2n(pi)i] = 1
    x^[1 / 2n(pi)i] = e
    x = e^[2n(pi)i]

  • @honestadministrator
    @honestadministrator Рік тому +1

    Natural logarithm for complex number is denoted as
    LOG () to the base e OR LN ()
    this is different from
    log () to the base e OR ln ( )
    n ( x) = 2 n π /( -i) = 2 n π i
    x = exp ( 2 n π i ) = 1

  • @nicolascamargo8339
    @nicolascamargo8339 Рік тому

    Excelente

  • @jaykhajuria248
    @jaykhajuria248 Рік тому +1

    Yo... It's gonna be great

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    x=e^(2nipi)

  • @XLatMaths
    @XLatMaths Рік тому

    A bit of a handwave at the end! x = 1 isn't a fully valid solution as you get 1/0 = RHS, which is a problem.
    Still, nice problem that you can do from looking at the thumbnail.

  • @rob876
    @rob876 Рік тому

    ln x = 2n.pi.i
    x = exp(2n.pi.i) = cos(2n.pi) + i.sin(2n.pi) = 1

  • @trojanleo123
    @trojanleo123 3 місяці тому

    x = e^(2πni)

  • @mcwulf25
    @mcwulf25 Рік тому

    Crazy ending. So effectively, to amalgamate the two outcomes, x = exp(2nπi), n 0.

  • @thomaslangbein297
    @thomaslangbein297 Рік тому +2

    There is no solution. e to the 2n*pi*i is always! 1, whatever n element of Z is. The log of any base element of R+ of 1 is always 0. So, the only possible solution is not part of the domain.

    • @lawrencejelsma8118
      @lawrencejelsma8118 Рік тому

      This result nobody is catching! Yes it is true x= e^(i(2πn)) x= 1 at n=0, n=1, n=2, n=3, ... That is what the expression means ... I can't believe all those message people saying, good I have, n=1 that is not zero so I have x=e^(i(2π)) so I can quickly take lnx to be 2πi and the same situation 4π, 6π, 8π, ... Where x cyclically equals 1 but never saying x=1 so that they can infinitely say ln(x) is not cyclically equals to 0. 🤣😂 I think this teacher put these comment people in an infinite joke wheel thinking ... And yeahh out at 100π or whatever x is not 1 it is e^i(100π) so we can take a quick ln to get lnx all over again. 😵🤣😂

  • @KennethChile
    @KennethChile Рік тому

    Then n>0

  • @JefiKnight
    @JefiKnight Рік тому

    You broke mathematics. 1 over ln(1) is a complex number.