Volume with cross sections: intro | Applications of integration | AP Calculus AB | Khan Academy

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 40

  • @george480
    @george480 4 роки тому +99

    Such a beautiful explanation. For guy like me with no spatial imagination this video is a gem.

  • @alonzo1o
    @alonzo1o 3 роки тому +31

    This is what years of mathematics has come full circle to, the application to the third dimension. Phenomenal explanation!

    • @Dygit
      @Dygit 2 роки тому +13

      Full sphere

    • @drabberfrog
      @drabberfrog 8 місяців тому

      How long until we do 4th dimension math?

  • @dawne2780
    @dawne2780 2 роки тому +16

    This video was absolutely incredible. I wish textbooks would just use your videos

  • @user-ie9iz6wi2f
    @user-ie9iz6wi2f 3 роки тому +14

    Your drawing skill is so amazing...

  • @shadowbbb4010
    @shadowbbb4010 3 роки тому +7

    This video got me hyped to do math

  • @interstellar0001
    @interstellar0001 3 роки тому +9

    Amazing explanation. Khan Academy is alright at teaching people arithmetically (at least in physics), but they’re sure as heck great at explaining concepts.
    Thank you to whomever had the idea for this video, it really helped.

  • @Peaceful-er4vf
    @Peaceful-er4vf 2 роки тому +6

    Amazing explanation and equally amazing drawing! Cleared it up for me really well!

  • @nilavadebnath2425
    @nilavadebnath2425 4 роки тому +5

    The exact video to my requirement, finally got it after a long quest.

  • @AliTahreiSh
    @AliTahreiSh 5 років тому +9

    I love you
    You make math so easy to understand for me. 💜

  • @MSDhoni-pz5wc
    @MSDhoni-pz5wc Рік тому +1

    You have got a great drawing skill sir!!

  • @jsrhedgehog9981
    @jsrhedgehog9981 4 роки тому +4

    In layman's terms: Integral from Xi to Xf of ((f(x) - g(x))^2) dx

  • @elephant5597
    @elephant5597 26 днів тому

    thank you

  • @xian7205
    @xian7205 4 роки тому +3

    (top minus bottom)^2 from 0-2

  • @crazyguy0_0
    @crazyguy0_0 Рік тому +1

    Absolute god-send. I thank you good sir for taking your time to explain this.

  • @user-ip1br1oq8j
    @user-ip1br1oq8j Місяць тому

    Wooow! His drawing skills is better than most artists today! 😂😂

  • @thebeginnerelectronicattac8320

    absolute perfection

  • @galasevgisi5123
    @galasevgisi5123 2 роки тому

    your drawing is satisfaction

  • @Copybook
    @Copybook 3 роки тому

    Thank you so much Bro. You are my hero

  • @wisamalkhoory6237
    @wisamalkhoory6237 5 років тому +1

    Wow man you are amazing

  • @povhengyam3395
    @povhengyam3395 3 роки тому +5

    He makes it sound so easy 😂

  • @reza7xz307
    @reza7xz307 Рік тому

    why is this video so satisfying to watch lol

  • @osamaelzubair1203
    @osamaelzubair1203 Рік тому

    Whatis the formal name for what we calculated ?
    I mean the volume of what ?

  • @farruhhabibullaev5316
    @farruhhabibullaev5316 9 місяців тому

    Can you do it for 4 object?

  • @DanteStormblessed
    @DanteStormblessed 5 років тому +1

    thaaaank you

  • @AdityaSUnboxings
    @AdityaSUnboxings 4 роки тому

    Wow thanks!

  • @juddorenvandiirn8342
    @juddorenvandiirn8342 5 років тому

    Thank you!

  • @MACBricks
    @MACBricks 6 років тому

    Good!

  • @LodeanNick
    @LodeanNick 3 роки тому

    Isn't volume = double integration? i don't get why here you use only 1 integration, the result you found is the area isn't?

  • @hinatahyuga8529
    @hinatahyuga8529 3 роки тому +1

    that is not in my book but has the same name
    PAIN

  • @tutstorial8474
    @tutstorial8474 4 роки тому +1

    how about sir if my concern is only the equation that describes the cross sectional area at x = 0 to x = 2 ??
    how to find that equation?

  • @Hobbit183
    @Hobbit183 6 років тому +1

    Nice video.
    I wonder if Sal ever responds to a youtube comment. :>

  • @apstudent25
    @apstudent25 2 роки тому

    this is a great video but at the end of the day why do i need to know how to do this 😭

  • @vivianhaxhiraj7577
    @vivianhaxhiraj7577 3 роки тому +1

    hey where can I find that calculator :(

    • @rawjaw1881
      @rawjaw1881 3 роки тому +1

      just look up download for ti-84

  • @pedrozafaye8727
    @pedrozafaye8727 2 роки тому

    「どうやってやるの?」、

  • @mimi-ct1ec
    @mimi-ct1ec 4 роки тому

    i have to do this for school and like, good explanation but i still understand none of it