How to solve? | square root problems for competitive exams| Oxford entrance exam question

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 14

  • @camgere
    @camgere 20 днів тому +3

    e^(ik2 π N/N) = 1, 1 is the identify operator of multiplication, N is positive integer, k is zero or positive integer (up to N-1).
    -1 = e^(i π)
    N = 4
    (-1)^(1/4) = (-1(1))^(1/4) = (e^(i π) e^(ik2 π 4/4))^(1/4)
    = (e^(i π/4) e^(ik2 π/4)), k = 0, 1 , 2, 3 (k= 4 is a repetition of k =0)
    = e^(i π/4, e^(i 3π/4), e^(i 5π/4), e^(i 7π/4)

  • @chitradevi9919
    @chitradevi9919 19 днів тому +3

    Bro forgot Oxford is for english

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  19 днів тому

      I know oxford is for English
      And this video is also for English 😊
      And its approaching finely.. don't be worried 🙂

  • @payoo_2674
    @payoo_2674 19 днів тому +1

    Another method
    ⁴√(-1) = (-1)^(1/4) = (e^((1+2n)πi))^(1/4) = e^((1+2n)πi/4) when n∈Z
    for n=0: ⁴√(-1) = e^(πi/4) = cos(π/4)+i∙sin(π/4) = 1/√2+i/√2
    for n=1: ⁴√(-1) = e^(3πi/4) = cos(3π/4)+i∙sin(3π/4) = -1/√2+i/√2
    for n=2: ⁴√(-1) = e^(5πi/4) = cos(5π/4)+i∙sin(5π/4) = -1/√2-i/√2
    for n=3: ⁴√(-1) = e^(7πi/4) = cos(7π/4)+i∙sin(7π/4) = 1/√2-i/√2

  • @abist17
    @abist17 19 днів тому +1

    Before watching:
    4root(-1)
    sqrt(sqrt(-1))
    sqrt(i) -> i=sqrt(-1)
    suppose sqrt(i)=a+bi s.t. a and b are real, non-complex numbers
    i=(a+bi)^2
    i=a^2+2abi-b^2
    2abi=i; a^2-b^2=0 since there are no ways f(a,b) can be imaginary
    2ab=1; (a+b)(a-b)=0
    2ab=1; a=b or a=-b
    2a^2=1 or -2a^2=1 but in case 2, a is not real.
    a=sqrt2/2, b=sqrt2/2
    Therefore, sqrt2/2(1+i)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 20 днів тому +1

    (➖ 1)^4= ➖ 1*➖ 1*➖ 1* ➖ 1 (x ➖ 1ix+1).

  • @payoo_2674
    @payoo_2674 19 днів тому +2

    You lost 3 solutions. The first two at 1:20, the third at 8:25.
    ⁴√(-1)=k
    Let k=a+bi {a,b∈R}
    (a+bi)⁴=-1
    a⁴+4a³bi-6a²b²-4ab³i+b⁴=-1+0i
    Comparing the real and imaginary parts of both sides of the equation
    a⁴-6a²b²+b⁴=-1 ①
    and
    4a³b-4ab³=0 => 4ab(a²-b²)=0 =>
    a=0 (rejected: from ① b⁴=-1, but b∈R) or
    b=0 (rejected: from ① a⁴=-1, but a∈R) or
    a²-b²=0 => a²=b² => (a=b or a=-b) ②
    Considering ② in ① (no matter which with an even power) we get
    -4b⁴=-1 => b⁴=1/4 => b=±⁴√(1/4)=±1/√2 ③
    From ② and ③:
    for b=1/√2 => a=1/√2 or a=-1/√2
    for b=-1/√2 => a=1/√2 or a=-1/√2
    So
    k=1/√2+i/√2 or k=-1/√2+i/√2 or k=-1/√2-i/√2 or k=1/√2-i/√2

  • @jalajam1
    @jalajam1 19 днів тому +1

    Good