YOLO Object Detection (TensorFlow tutorial)

Поділитися
Вставка
  • Опубліковано 23 гру 2024

КОМЕНТАРІ • 981

  • @yet2BnAm3d
    @yet2BnAm3d 7 років тому +134

    I literally just sat down to do an assignment on this. Siraj, your timing is impeccable

    • @SirajRaval
      @SirajRaval  7 років тому +7

      thanks!

    • @DuhBroadcaster
      @DuhBroadcaster 7 років тому +1

      @Siraj Raval, can you comment or make a video on how YOLO is trained? Are the two parts trained on different networks and then combined? Or are they all trained in one go? More info would be appreciated.

    • @sethagastya
      @sethagastya 5 років тому +1

      I just liked this comment to bring the total to 69 :D

    • @tejaschaudhari3259
      @tejaschaudhari3259 5 років тому

      Hfish21 please can you tell me how did u do all this work... Because its my project work.. It need it at any cost please

    • @tonystark8493
      @tonystark8493 4 роки тому

      Hey my name is naazim I have made this video on detecting actions in basketball match with Yolo, tensorflow etc
      Pls check it out if you are interested in this topic
      ua-cam.com/video/0X6yTkXn-qQ/v-deo.html

  • @josephfoltz2423
    @josephfoltz2423 6 років тому

    You sir, are the reason my company is headed into softwsee development, coding, and programming. This video is worth more than gold.

  • @JossWhittle
    @JossWhittle 7 років тому +143

    At 4:10, HOG does actually mean Gradient in the same way as backprop does. An image is just a discrete representation of a continuous 2D signal, the gradient of the continuous signal at a point can be approximated from the discrete representation by taking the finite difference between neighbouring pixels.

    • @DavidSaintloth
      @DavidSaintloth 7 років тому +11

      yeah I was surprised that Siraj didn't know that this was identical to a gradient.

    • @mike61890
      @mike61890 7 років тому +6

      I think he meant the gradients don’t have the same function as they do in backprop, i.e. representing an error value

    • @MasterNeiXD
      @MasterNeiXD 7 років тому +4

      So pretty much like a vector in physics.

    • @tioguerra
      @tioguerra 7 років тому +11

      Joss Whittle is right, and Siraj comment startled me as well first time I watched. The derivative always points to the direction of the (possibly local) maximum. The gradient definition used in the context of backprop is not different. Even though in HOG it does not represent an error to be minimized, the property still holds.

    • @Vancha112
      @Vancha112 7 років тому +1

      Yes one is gradient as in describing a slope, the other is gradient as in color. I think thats what he means by different :)

  • @RatherBeCancelledThanHandled
    @RatherBeCancelledThanHandled 7 років тому +1

    I thank God, that I started studying programming/math, so much fun and so fascinating to be able to take part in such cool technological advancements.

  • @oliviersaint-jean6330
    @oliviersaint-jean6330 6 років тому +12

    For videos, I think the algorithms should take the time dimension into account, (ie. increasing the probability of an object detected in one frame to be there again in the next frame) to decrease computation cost.

  • @myperspective5091
    @myperspective5091 7 років тому

    I've seen YOLO before about a year or two ago it seems like it got better even since then. Good to see them still improving their product.

  • @Lunsterful
    @Lunsterful 7 років тому +1682

    Gotta send a link of this to my ex-wife! Maybe she can finally detect that I am a person.

    • @theAppleWizz
      @theAppleWizz 7 років тому +25

      Way to much info to much but it's good your venting.

    • @contentity
      @contentity 7 років тому +21

      Never marry a lizard person

    • @SirajRaval
      @SirajRaval  7 років тому +74

      haha wow thats real af

    • @mulindwajoseph5176
      @mulindwajoseph5176 7 років тому +1

      #LIZARD PERSON REALLY?/@#

    • @bluebear25519
      @bluebear25519 6 років тому +2

      Lol, i wish in future it can detect and read mind

  • @guiller2371
    @guiller2371 Місяць тому

    I love this video!
    Never expect any but the best from Siraj.

  • @Loopyengineeringco
    @Loopyengineeringco 7 років тому +11

    TBH, I only clicked this because it said YOLO. Now my brain is exploding.
    But joking aside, you're a great explainer and this is all starting to make sense. Thanks for the video!

  •  7 років тому +1

    Hi Siraj, just another killer tuto !!! Let me just add that windows users (like me by the way) might have difficulties to install darkflow. They can encounter a cl.exe exit code 2. To get around that you have to use the pip install . within the cross compiler x86_64 command prompt. To do that you just use the Windows key, followed by ctrl-tab and then type v on the keyboard. This should lead you to the Visual Studio command prompts list. Choose the right one and then go to the cloned darkflow dir to issue the pip command. Keep up the great work Man !!!

  • @yashchandraverma3131
    @yashchandraverma3131 5 років тому +39

    CNN works this time
    1- Computation
    2- Large Amount of Image available

  • @gmanon1181
    @gmanon1181 4 роки тому

    Waoh, it's like passing from electrical signals to file processing. This is a technology miracle.

  • @planktonfun1
    @planktonfun1 7 років тому +49

    It seems that there's a faster algorithm called ssd multibox object detection, even works somewhat fast in android

    • @kevaldholu7366
      @kevaldholu7366 4 роки тому

      yes.. ssd is faster than the yolo. and better suit for real-time applications.

    • @lordbry470
      @lordbry470 4 роки тому +1

      @@kevaldholu7366 well yes. But the yolo is more favored because its simplicity than the latter.

  • @med12med
    @med12med 6 років тому +13

    Man! You are amazing. your kind of presentation makes me stay completely focused!

  • @ehouarnperret9063
    @ehouarnperret9063 7 років тому

    This is crazy I graduated back in 2012 and things have changed a lot.

  • @georgebockari289
    @georgebockari289 7 років тому +137

    Bro you might not know this...but you're pretty good at this UA-cam thing lol. Thanks man you're the best

    • @xavdel0
      @xavdel0 7 років тому +15

      The secret is use deeplearning to improve the video

    • @RiteshKumarMaurya
      @RiteshKumarMaurya 7 років тому +2

      Watch me man!
      ua-cam.com/video/jc_-AIYvfKs/v-deo.html

    • @SirajRaval
      @SirajRaval  7 років тому +6

      Thanks George lots of practice

    • @holychipotle
      @holychipotle 6 років тому +2

      teaching is the best way to learn

  • @lakshmannadipilli7315
    @lakshmannadipilli7315 4 роки тому

    wahh !!!!! what an explanation man ??? mind blown for 30 mins straight

  • @schulca
    @schulca 7 років тому +31

    These videos are great! also a lot easier to focus on when there aren’t memes popping up all the time. I enjoy the lecture style.

  • @noone-mc1sw
    @noone-mc1sw 4 роки тому

    THE BEST DESCRIBTION I SAW. REALY NDERSTANDABLE

  • @gugasevero76
    @gugasevero76 6 років тому +6

    Siraj, can you do a video showing how to install YOLO, please? Thank you so much

  • @Xartab
    @Xartab 7 років тому

    Oh, look, apparently now I have to binge-watch all the videos of this new channel that I just discovered. Honestly, at this point amazingly good channels like yours amount to a chore.

  • @ubvzard3944
    @ubvzard3944 6 років тому +10

    @siraj, at 0:50; And we are going to build our own model as well....". But, when did we build our own model???

  • @MrZouzan
    @MrZouzan 7 років тому

    I was looking for this just a few days ago and was a great coincidence that you decided to upload this video , thanks!!

  • @saysoy1
    @saysoy1 6 років тому +23

    0:41 i'm still searching for the train!

  • @benjaminf.3760
    @benjaminf.3760 6 років тому

    Dude your channel is pure gold

  • @mirandaclace4940
    @mirandaclace4940 5 років тому +9

    Anyone got any opinions/warnings regarding YOLOv3? About to start a project and dont wanna make my life more difficult than it already is

    • @Augmented_AI
      @Augmented_AI 5 років тому

      Yolo V3 is really simple. I have some experience with it :)

  • @aprendehohau
    @aprendehohau 5 років тому

    Thanks for your work it is the first time i find proper and clear explanations about how to interpreter the network output.

  • @sorvex9
    @sorvex9 Рік тому +1

    Oh how I miss 2018 machine learning.

  • @LeEnnyFace
    @LeEnnyFace 6 років тому +3

    i love how siraj's videos are understandable until the last quarter or so and then it's a freaking downhill

  • @Lavimoe
    @Lavimoe 7 років тому +2

    The whole video is very thorough and comprehensive, which makes such intimidating subject a no-brainer for the beginners. Not sure how I will use YOLO in my future projects, but I really learned a lot from this video!

    • @CAGonRiv
      @CAGonRiv Рік тому

      Its been five years. How about now?

  • @Carl-gi3il
    @Carl-gi3il 6 років тому +12

    17:27. As a C programmer, I'm kinda offended, but at the same time I think the best language for machine learning is python and the best framework is tensorflow.

  • @jbuist
    @jbuist 6 років тому

    That was an excellent description of a topic that has been confusing the heck out of me for many hours. Thank you!

  • @intr0vrt639
    @intr0vrt639 7 років тому +131

    Object detection made easy

    • @sharoseali708
      @sharoseali708 7 років тому +1

      plz tell me how to implement this on my Windows PC ..plz tell me some way out for this bro.. ....

    • @TheAnirudhable
      @TheAnirudhable 7 років тому +2

      Buy a MAC

    • @sharoseali708
      @sharoseali708 7 років тому +1

      Bro this isn't a valid solution..

    • @sharoseali708
      @sharoseali708 7 років тому +1

      The dark net has also windows version.. but i haven't know complete knowledge to set environment on Windows

    • @relionB
      @relionB 7 років тому +2

      Use VoTT and CNTK docs.microsoft.com/en-us/cognitive-toolkit/object-detection-using-faster-r-cnn

  • @Brehhda
    @Brehhda 7 років тому

    Thanks so much for this video Siraj, I really enjoy that it doesn't have as many cuts as usual

  • @exratt
    @exratt 7 років тому +3

    Hi Siraj,
    thanks for your video. I never heard of the YOLO detector before and find this approach very interesting, as I'm used to the good old brute force method of detecting objects. I have a few remarks concerning the two mentioned pre-deep-learning algorithms.
    Regarding the Viola-Jones detector: The features are hand-coded (Haar-like features, which are basically the gray-scale value difference of neighboring rectangular regions), but the locations are not selected by the researchers themselves, as suggested by your video. Instead, they are selected by the training algorithm. They did not use a support vector machine for classification, but a cascade of simple classifiers, which were trained using AdaBoost. Maybe you confused it with the HOG approach.
    What made the Viola-Jones detector so efficient was the features and cascade. The features could be computed very efficiently using an integral image (only three additions to compute the sum of gray-scale values over any axis-aligned rectangular region). The cascade was trained such that image windows which did not contain a face would be discarded very quickly, so only very few windows needed to compute all the features and go through all cascades.
    The image on your slides is also a bit misleading. It mentions local binary patterns, which is another feature extraction method. The image shows face recognition, in this very case to find out whether a face belongs to the person it pretends to be.
    The Dalal-Triggs detector uses histograms of oriented gradients, as you mention. They build histograms over each cell, so it does not only contain the strongest gradient direction of all the pixels in a cell.

  • @yannickmolinghen3425
    @yannickmolinghen3425 6 років тому

    Thanks for your work it is the first time I find proper and clear explanations about how to interpret the network output!

  • @doctorpurple5173
    @doctorpurple5173 5 років тому +128

    I'm a genius now, thx

    • @rediyusputra8333
      @rediyusputra8333 5 років тому +2

      @Xingming Pinyin this will make you genius, xigishihiwifisidirixieitiyiuiiy

  • @vijayabhaskar-j
    @vijayabhaskar-j 7 років тому

    I was about to do my assignment on YOLO on Deep Learning Specialization by Andrew Ng, and this pops out right on time!

  • @sanstechie_official4669
    @sanstechie_official4669 5 років тому +4

    I think it's developed by Joseph Redmon ...... YOLO i've seen his TED talk. and also he made it as open source.

  • @joaoantonio7542
    @joaoantonio7542 4 роки тому +1

    Where can I find the documentation of this video on the explanation of object detection history?

  • @gabrielvoss6251
    @gabrielvoss6251 7 років тому +11

    Yeeeee I waited for so long for yolo

    • @RiteshKumarMaurya
      @RiteshKumarMaurya 7 років тому +1

      The Magic V, do you want to have a tutorial on Google Speech API, i.e., convert your speech into text!
      Watch this:
      ua-cam.com/video/jc_-AIYvfKs/v-deo.html

  • @prezhaven8740
    @prezhaven8740 6 років тому

    I LOVE THE FUTURE!!! YOU R A ROCKSTAR Siraj!!

  • @jazzpote4316
    @jazzpote4316 7 років тому +3

    Your videos are so amazing. You cover all the fields of CS practically, with a state of the art approach.
    So helpful, keep it up

  • @nandfednu3502
    @nandfednu3502 6 років тому

    you are such an awesome human being Siraj

  • @LouisCubingChannel
    @LouisCubingChannel 7 років тому +4

    hi siraj,
    when I doing the YOLO I encountered: AssertionError: Over-read tiny-yolo.weights.
    the env is win7 and python 3.6.3.

  • @mlucasl
    @mlucasl 6 років тому

    Gradient from HOG and BackPropagation are the same thing... Is a mathematical value given where a function increase or decrease. So Gradient may be where things get darker (less light), or whether you get less error.

  • @ThisOLmaan
    @ThisOLmaan 5 років тому +10

    wow it detects MP4 recorded files and in "Real Time" cooooool

    • @sarahmachin3665
      @sarahmachin3665 4 роки тому

      Any ideas why image jpgs work fine and mp4s don't on my mac?? thanks!

  • @AlanDeRossett
    @AlanDeRossett 6 років тому

    Great Tutorial will train to recognize Students and Faculty and objects like weapons.

  • @llawliet6429
    @llawliet6429 7 років тому +34

    "we are going to build"?. i think you used someone else's code. 20 min of explanation and 2 of demonstration ::thinking::

    • @carlosflar
      @carlosflar 7 років тому

      L Lawliet yeah it was done by someone else

    • @ismailsahin9600
      @ismailsahin9600 6 років тому +4

      ok you can do 20 min of demo and 2 min explanation, but you wont. So why, because never believe in appreciation

    • @llawliet6429
      @llawliet6429 6 років тому +2

      i appreciate his videos, i am a programmer and i am thinking of staying aside anything that will destroy jobs. i guess i am just hating. if you think, the car is the most useful invention, and i am starting to think computers are not the answer to a "better world" :(. i am depressed.

    • @cynthiahabonimana2097
      @cynthiahabonimana2097 6 років тому +3

      I am in CS too ! :) Just like a knife, deep learning can be used for wrong or good things depending on whose hands it is in ! I think our ethics should be questioned instead, to make sure we understand the impact what we’re creating. Cheer up ! Personally, I am excited for machine learning, what a time to be alive! :))

    • @possiblyadickhead6653
      @possiblyadickhead6653 6 років тому

      Cynthia Habonimana will all laugh when theses fuckers of ai learn to code

  • @user-ym8sp2yi1k
    @user-ym8sp2yi1k 5 років тому

    I luv your hands-free scrolling in this video

  • @dasberserkr
    @dasberserkr 4 роки тому +5

    From a guy who defined the concept of a "logic door"...

  • @anarcominhoto
    @anarcominhoto 4 роки тому +2

    Can YOLO deal with RGB-D data from a Kinect device for example?

    • @GUINTHERKOVALSKI
      @GUINTHERKOVALSKI 4 роки тому

      sure, as any cnn.

    • @anarcominhoto
      @anarcominhoto 4 роки тому

      @@GUINTHERKOVALSKI How so? How can i input depth and rgb synced data in a cnn?

    • @GUINTHERKOVALSKI
      @GUINTHERKOVALSKI 4 роки тому

      @@anarcominhoto concat depth with rgb channels, so that your dim is (width,height,channels)

    • @anarcominhoto
      @anarcominhoto 4 роки тому

      @@GUINTHERKOVALSKI ok, but can i have a score of class, x,y and 3 bounding boxes parameteres, with that method?

  • @VladyVeselinov
    @VladyVeselinov 6 років тому +3

    Heads up, version 3 is just out: pjreddie.com/darknet/yolo/
    Paper: pjreddie.com/media/files/papers/YOLOv3.pdf

  • @tgbaozkn
    @tgbaozkn 4 роки тому

    Thank you sir!! Your pronunciation is very well ,amazing ! I understand without subtitles thank you this informative video and your expression

  • @francium511
    @francium511 7 років тому +3

    Hey siraj nice work out there
    I am trying to start AI can you give me some recommendations about the content and there order to learn.
    Thank you.

    • @theAppleWizz
      @theAppleWizz 7 років тому

      he has a playlist in his youtube page where he shows how it work

    • @itsSKG
      @itsSKG 7 років тому

      See the video quick questions with siraj raval on this channel itself. You will find your answer!

    • @SirajRaval
      @SirajRaval  7 років тому +1

      my playlists

  • @burf2000
    @burf2000 6 років тому +1

    I would love to see an updated version of this, Yolo3 is out and doesn't seem to work with this code

    • @Augmented_AI
      @Augmented_AI 5 років тому

      YoloV3 is indeed quite robust for common AI-CV applications :).

  • @Slanimero
    @Slanimero 7 років тому +4

    I thought SSD, faster R-CNN using ResNet, and R-FCN were all more accurate than YOLOv2

    • @MLbytescse
      @MLbytescse 7 років тому +3

      you are right yolo is fast but not accurate as other architectures

    • @SirajRaval
      @SirajRaval  7 років тому

      will look into SSD

  • @dpcarlyle
    @dpcarlyle 7 років тому

    Watching while eating breakfast in Saigon Vietnam....you are amazing...thank you for distilling the steps for how to configure and set up...going to have a lot of fun running g through your example.... :)

  • @0Kaliber0
    @0Kaliber0 7 років тому +6

    Can you show and explain SSD too? :3 I've read it should be faster then YOLO :)

    • @OBailo
      @OBailo 7 років тому +1

      Nope, it's not. YOLOv2 is the fastest object detection out there. Check their comparison here (pjreddie.com/darknet/yolo/ )

    • @SirajRaval
      @SirajRaval  7 років тому +2

      will consider ssd

    • @MrBenjaminb10
      @MrBenjaminb10 6 років тому

      Did you?

  • @dirkvanbeveren5042
    @dirkvanbeveren5042 7 років тому +2

    This is Brilliant. I'm actually gonna play with it. Thanks Siraj!

  • @swaaagquan3540
    @swaaagquan3540 7 років тому +6

    YOLO does seem to be a pretty good, some researchers I've chatted to are making it work for pothole detection: github.com/sekilab/RoadCrackDetector
    Saves anyone having to report a pothole again (in theory).
    It's an interesting time to be alive.

    • @SirajRaval
      @SirajRaval  7 років тому

      great link!

    • @recklessroges
      @recklessroges 7 років тому +1

      Good additional confirmation, but I think a distributed used of the anonymised accelerometers in phones is probably more effective. www.boston.gov/departments/new-urban-mechanics/street-bump

    • @swaaagquan3540
      @swaaagquan3540 7 років тому +2

      Reckless Roges why not both? It's always good to crack the same problem in many ways.

  • @igoralves1
    @igoralves1 3 роки тому

    Man, this is one of the best explanation for begginers I ever see !!!!! Very good. Do y have any ML course? I will pay for it.

  • @hamzakhalid9381
    @hamzakhalid9381 4 роки тому +9

    You're just reading off from a github page that's all and for the implementation part you just flew through it......!!

    • @bishwasmishra8860
      @bishwasmishra8860 4 роки тому +1

      Still helps.

    • @opaaaaaaaaaaa
      @opaaaaaaaaaaa 4 роки тому +1

      The important part is it helps.
      The reason you are here is also the same.😂

  • @mohamedzain8628
    @mohamedzain8628 4 роки тому

    Outstanding explanation and I appreciate the way you presented your project.
    Keep illustration

  • @jinxblaze
    @jinxblaze 7 років тому +6

    imagine doing this but with capsule !! new project idea !!

    • @SirajRaval
      @SirajRaval  7 років тому +3

      sprinkle capsule on everything lol

  • @rohscx
    @rohscx 6 років тому

    Thanks for the great explanation. I now understand the significance of YOLO.

  • @Jonstyle69
    @Jonstyle69 4 роки тому +5

    nice video, plz make more

  • @katarinavuckovic4140
    @katarinavuckovic4140 4 роки тому +1

    It would be great if you could provide reference to the papers that you are using in this lecture.

  • @daaaniel21
    @daaaniel21 7 років тому +17

    I made this few months back for my college techfest. checkout this ,it is the one that inspired me> github.com/oarriaga/face_classification

    • @edoardo247
      @edoardo247 7 років тому +2

      Very good work, I will fork for sure :D

    • @SirajRaval
      @SirajRaval  7 років тому +1

      very cool

    • @maxikanec4545
      @maxikanec4545 7 років тому +1

      Will it assume my gender??? omg im getting triggered...

    • @octavioarriaga8443
      @octavioarriaga8443 7 років тому +1

      I am glad to hear that :)!

  • @flaviorodrigues197
    @flaviorodrigues197 4 роки тому +1

    is there any good website where i can find yolo implementation for java?

  • @etiennetiennetienne
    @etiennetiennetienne 7 років тому +9

    violo jones uses svm? omg can't you google stuff before you talk?? viola jones are famous for combining cascades of boosted classifiers...

    • @SirajRaval
      @SirajRaval  7 років тому +3

      the improved version uses SVM link.springer.com/chapter/10.1007/978-3-642-22822-3_7

    • @etiennetiennetienne
      @etiennetiennetienne 7 років тому +2

      "we present a new cascading structure added SVM stages which
      employ the confidence values of multiple preceding Adaboost stages as
      input". ... also, just googling "viola and jones", wikipedia: en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework

  • @richasingh8513
    @richasingh8513 6 років тому

    It is such a beautiful initiative taken by you to teach the globe about the threshold technologies. Keep the good work up.

  • @ZelenoJabko
    @ZelenoJabko 7 років тому +10

    Congrats, you know how to copy-paste. But just barely.

  • @sramctc
    @sramctc 6 років тому

    Needless to say, subscribe at once, a very clear and useful presentation.

  • @ubongfx2436
    @ubongfx2436 5 років тому +3

    his movements are irretating me :(

  • @aaronle2846
    @aaronle2846 2 роки тому

    Hey dude thanks so much for your lengthy explanations and your enthusiasm when you make your videos. It really helps !

  • @staberas
    @staberas 7 років тому +46

    stop objectifying dogs siraj /jk

  • @gudikandularamya889
    @gudikandularamya889 4 роки тому +1

    Hello sir...iam working on this project.i followed ur video to do things.but now am getting error no module name nms.if i install nms using pip it will give me another error .module nms has no attribute __pyx_capi__..sir please help me out this problem

  • @TheSpellShell
    @TheSpellShell 6 років тому +5

    Could it recognize person in hijab?

  • @jonathanr4242
    @jonathanr4242 2 роки тому

    I did my phd on image segmentation around the turn of the century, and i remember waiting hours to process one image. How far we've come.

  • @rishavsrivastav500
    @rishavsrivastav500 7 років тому +23

    😂😂 wasted 22 min.....all u did was reading the lines and in the end u said follow the link in the discription👏👏 if that was the case u could have rounded up the video in 2 min 😤😤😤

    • @brunzero7697
      @brunzero7697 6 років тому +8

      he spent that time to explain to you in detail what was happening you ingrate

    • @RandomShowerThoughts
      @RandomShowerThoughts 6 років тому +1

      he explained it really well but i agree

    • @allmightqs1679
      @allmightqs1679 6 років тому +2

      Wow! People wanna code without knowing the logic behind the code. What has the world come to? 🙈

    • @vishavjeetsingh7862
      @vishavjeetsingh7862 6 років тому +4

      Bro learning mein ego mat la, this video was useful for lots of folks including me. This video has now given me a direction as to which research papers to start with.

  • @kamarolzaman7199
    @kamarolzaman7199 7 років тому

    Best video yet! I like this lecturer-y style much more, keep it up!

  • @wolfgangneumann6789
    @wolfgangneumann6789 6 років тому

    Wow - impressive! The technology - but even more the way your way to explain it!!

  • @ndujudeleonard9475
    @ndujudeleonard9475 3 роки тому

    Mehn!! you are a great teacher I wish I could subscribe a thousand times. Thank you for this♥️

  • @jvalal
    @jvalal 6 років тому

    would be great to see this from scratch. For ex. I have a live video feed of a concert and I want to classify the guitar the person is using. How would one
    1. Set up the environment - don't skip over anything that you think people may know.
    2. Train it on a set of images of guitar types to
    3. Test the model with some video feeds
    4. Then test live

    • @mwshiv6493
      @mwshiv6493 6 років тому

      Windows environment ?

  • @ericpaulgoldie
    @ericpaulgoldie 7 років тому

    Awesome video. Time to combine YOLO with my 3d printed Arduino powered robotic arm.

  • @bloodaid
    @bloodaid 7 років тому

    Siraj, even though i don't do anything AI related, I always watch your videos just in case I get started. I've learned so much

  • @melihaslan9509
    @melihaslan9509 4 роки тому +1

    Why those energized people first invent then get energized? Reading solved problem gets you excited?

  • @SaikatBasak
    @SaikatBasak 7 років тому

    In R-CNN, if we are using CNNs to extract features for the proposed regions then why not use some dense layers for the classification rather than using an SVM? What are the trade-offs?

  • @DannyJulian77
    @DannyJulian77 7 років тому

    Siraj! Thank you so much! When you explain step by step like this I can undestand everything! Love this video!

  • @padisalashanthan98
    @padisalashanthan98 4 роки тому

    Really amazing explanation!

  • @joeldejesusmazaamador2101
    @joeldejesusmazaamador2101 4 роки тому +1

    how does it work? android detection algorithms with yolo

  • @rediettadesse5488
    @rediettadesse5488 4 роки тому

    This is really awesome. You explain it in such a clear and simple way.Thank You!!!!.

  • @virgenalosveinte5915
    @virgenalosveinte5915 Рік тому

    great video, thorough explanation

  • @pjeet4411
    @pjeet4411 5 років тому +2

    can you explain how to build custom object detection using tensorflow

  • @original9
    @original9 4 роки тому

    So can YOLO record the position data it finds of the items its tracks so they can be reconstructed in 3D software such as 3ds max in 3D space???? 🤔

  • @kebluetugirafee7558
    @kebluetugirafee7558 4 роки тому

    Thanks, but I still have some questions that i do not understant,. In yolo, where the 13*13*5 bounding box come from? Those are given data?or need to generate randomly?

  • @timothynwanwene4378
    @timothynwanwene4378 7 років тому

    I Love all your videos. You are precise, fast, make mountainous task so simple to deal with... Thank.

  • @albin6382
    @albin6382 4 роки тому +2

    3:59 Isn't the mathematical definition of gradient the original meaning and the backpropagation stuff something else that later on got the name? en.wikipedia.org/wiki/Gradient

  • @neelsalunke6422
    @neelsalunke6422 6 років тому +1

    @Siraj what do you mean by a grid cell can predict up to 5 bounding boxes?