What is YOLO algorithm? | Deep Learning Tutorial 31 (Tensorflow, Keras & Python)

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 289

  • @codebasics
    @codebasics  2 роки тому +12

    Check our Deep Learning Course (in PyTorch) with Latest, Industry Relevant Content: tinyurl.com/4p9vmmds
    Check out our premium machine learning course with 2 Industry projects: codebasics.io/courses/machine-learning-for-data-science-beginners-to-advanced

    • @manuthampi3305
      @manuthampi3305 Місяць тому

      Gyyiwygoyswyywoywiywowhiywiwiyiywgoywwoywiywoykgoywiwyoogwiygowiowgowowoiwgowyiwieyieiwiwyoywowyogiigwoyeiwyiwoywiksowwiiewyiyiywwiieiwiwiywiyigywiwiiwykwiyiwgwoywiuwiyeiwyowyiwyywiowiigeiyewiowiiywoywwowkiywiwwgoyswiywoywgkieiiiioiegkiywièiegèwwwwwwwewèwywgywywwygwyywwgywywegwywwgywwwwwgywywwywwywywwtwgywywywywwwgywewwwgywywwgyweyiwygwywywywgwwywgygywyggwywywwgwywygyygwgwwywygywygwwygyeyweyjywwwywywygwgwwywwywwweygywywyywwwygwywywywgy1wgywwywwywywywgywwtgywygwgeywwyywggyhgyihŵyhyygg 4:01 gyhiyirgi 4:03 yi 4:04 ooyhi 4:06 fhi 4:07 hriygghihyyiiẁggygggwigyyyyoywyywowyiwiwwwygywiyeh 4:29 88upg80😂uf

  • @peterliu2910
    @peterliu2910 Рік тому +10

    Among all the yolov explaining videos this one makes the most sense! Thanks

  • @guillermoernestomedina2298
    @guillermoernestomedina2298 3 роки тому +68

    My Deep Learning teacher couldn't explain this in 3 weeks the same way you did in 16 minutes, thank you very much.

    • @priyanshijain4056
      @priyanshijain4056 Рік тому +1

      so true

    • @Abraham33286
      @Abraham33286 11 місяців тому +6

      I think you didn't concentrate to your teacher lecture like you did in this video

    • @a2zfun181
      @a2zfun181 Місяць тому

      ​@@Abraham33286yes..
      Inki mind class me present rhti nhi hai.
      Yaha akele dekh rha hai n.
      To islie samjh gya 😂😂

  • @urbanspoken
    @urbanspoken 2 роки тому +1

    Such a perfect introduction to YOLO. Thanks!

  • @AmberK296
    @AmberK296 3 роки тому +49

    The best explanation for YOLO! It's really helpful. Thank you.

  • @11aniketkumar
    @11aniketkumar Рік тому +2

    I watched a hour long video earlier and understood nothing, and now in just 16 min, I understood everything. Thanks a lot!

  • @codebasics
    @codebasics  3 роки тому +4

    Beginners Deep learning playlist: ua-cam.com/play/PLeo1K3hjS3uu7CxAacxVndI4bE_o3BDtO.html
    Beginners Machine learning playlist: ua-cam.com/play/PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw.html
    Data science 6 months learning roadmap: ua-cam.com/video/H4YcqULY1-Q/v-deo.html

  • @sivakrishnayammana8690
    @sivakrishnayammana8690 3 роки тому +2

    This is the best explanation that I have not seen any where
    Only once I watched and got knowledge on yolo
    Thank you so much for this knowledge sharing

  • @shilinwang2958
    @shilinwang2958 3 роки тому +45

    I really like your style of explanation. It's very clear and informative.

  • @CodeWithVaibhav0910
    @CodeWithVaibhav0910 3 роки тому +1

    Perfect and Clear Introduction to YOLO

  • @RichardBronosky
    @RichardBronosky 3 роки тому +24

    Such a great communication happening in this video. The awareness of your audience at 8:15 is amazing. While it's true that "communication is what the listener does", to be a communicator, you must have empathy. Be proud of yourself for this.

  • @brightsideethiopia1276
    @brightsideethiopia1276 3 роки тому +6

    My God which kind of perfect explanation is this wow I don’t what to say bro just God bless you

    • @bnsanthosh1
      @bnsanthosh1 3 роки тому

      Yes.. there is no details about network!, its only about box encoding

  • @Tuoc_Nguyen
    @Tuoc_Nguyen 6 місяців тому

    I used YOLO before I understood what it was, thank you for helping me understand how YOLO works

  • @jordiwang
    @jordiwang Рік тому +1

    thanks mate, went through a couple of videos and your's the one that explain it the best

  • @jakobhalskov
    @jakobhalskov 2 роки тому

    The amount of good information and dogs in this video make me happy :)

  • @commercial3750
    @commercial3750 Рік тому +5

    What an awesome video! You really know how a student thinks. You answered all my questions - even the ones that I didn't realize I had! This was some excellent video format and pacing. I have liked and subscribed.

  •  4 роки тому +23

    please make a full project on this from code to deploying

  • @trenadatta8243
    @trenadatta8243 3 роки тому +5

    At 7:28, that looks more like 2 x the width of the grid cell. Why is it 3?

  • @salvadornunez23
    @salvadornunez23 9 місяців тому +1

    excelente tutorial

  • @deepakkarmaDK
    @deepakkarmaDK 6 місяців тому

    You clear the concept in 16 min thanks bro..

  • @ruchirjain1163
    @ruchirjain1163 3 роки тому +1

    man, this was such a good explanation to YOLO!

  • @amarjeetcheema8803
    @amarjeetcheema8803 4 роки тому +25

    Awesome work Sir, You explain such complicated things in a way, it feels like cakewalk to understand. Thanks alot . Please make full python yolo implementation for video inputs.

  • @SanaOmar-u7y
    @SanaOmar-u7y Місяць тому

    the best explanation honestly you are a master

  • @helloansuman
    @helloansuman 3 роки тому

    Best explanation till date

  • @shashidugad2637
    @shashidugad2637 4 роки тому +5

    Excellent introduction to YOLO. Looking forward for code deployment video

  • @benwinstanleymusic
    @benwinstanleymusic Місяць тому

    Brilliant explanation, thank you so much!

  • @howtotechtutorialsvideos
    @howtotechtutorialsvideos 11 місяців тому

    I am new to ML but still i understand what you have said bout YOLO great work

  • @Meme-m5k
    @Meme-m5k Місяць тому

    You are really awesome, explained it clearly

  • @moahaimen
    @moahaimen 2 роки тому

    The best Explanation of Yolo thank you very much

  • @afeefapallipparamban9970
    @afeefapallipparamban9970 2 роки тому +1

    I like this video very much. You explained the working of YOLO very simple , crystal and clear way. Thank you very much. Expect more.

  • @timfairfield407
    @timfairfield407 3 роки тому

    well worth watching. thanks for this. i had to pause where you said to as well. then I got it.

  • @jamestidjani660
    @jamestidjani660 2 роки тому

    it my first time around and i have already got a good level on YOLO...thanks for explanation///

  • @ubmubm2
    @ubmubm2 5 місяців тому

    תודה!

  • @roderickdunn2517
    @roderickdunn2517 3 роки тому +1

    At 6:48 - Bh seems correct (1.3), but why is Bw=2? If Bw is the proportion of the grid cell's width, it looks like it should be ~1.5.
    At 7:28 - Here the dimensions seem like they should be Bw=2, and Bh=1.7, but they are shown in the vector as Bw=3 and By=2.
    Am I missing something, or are these meant to just be rough estimates for the demo?

    • @Multibjarne
      @Multibjarne 2 роки тому

      I agree - that really putted me off, lol

  • @videoinfluencers3415
    @videoinfluencers3415 4 роки тому +3

    Thank you very much sir !!! Egarly waiting for next part

  • @lam-thai-nguyen
    @lam-thai-nguyen 5 місяців тому

    thank you for the presentation, it is easier for me to understand compared to the paper

  • @kaiyongong1894
    @kaiyongong1894 3 роки тому +1

    Yeah! Very clear explanation.

  • @DV-lh2ov
    @DV-lh2ov 9 місяців тому +1

    11:22 IOU was performed over a pair of rectangles. How do you know which one of the two to "discard"? It is not clear at all.

    • @shreyatre5765
      @shreyatre5765 5 місяців тому

      Basically, you use Yolo non-max suppression for that. It discards values not meeting threshold and other criteria.

  • @sasori3897
    @sasori3897 4 місяці тому

    This was amazing! love it

  • @yamansaini6379
    @yamansaini6379 Рік тому

    I like it bro clear and simple explanations

  • @pravinshende.DataScientist
    @pravinshende.DataScientist 2 роки тому

    thank you sir .. you have explained the content in very good manner. . with coding from scratch and i like it ... have a very nice moring..and many many best wishes from me to you !

  • @arjunvarmamaths1349
    @arjunvarmamaths1349 8 місяців тому

    Glad I watched ur video ❤❤❤

  • @anime_on_data7594
    @anime_on_data7594 3 роки тому +1

    Sir your explanation is amazing in the field of data science

  • @jameslay6505
    @jameslay6505 Рік тому

    Very nice, excellent description. Thank you!

  • @iguyblr
    @iguyblr 3 роки тому +1

    Thanks for sharing your knowledge

  • @BrainBlink-111
    @BrainBlink-111 3 роки тому

    best explanation... you are doing a great job.

  • @gaolugang
    @gaolugang 2 роки тому

    Nice work. You deserve more than one upvote. Sadly I can only give one.

  • @BreeAiSolutions
    @BreeAiSolutions Рік тому

    Thank you alot this explanation is all i ever needed

  • @brightsideethiopia1276
    @brightsideethiopia1276 3 роки тому +3

    Every software engineers should subscribe this best channel omg you are just fire 🔥 wow

  • @AVyt28
    @AVyt28 4 роки тому +1

    Waiting for more videos on yolo👏👏

    • @codebasics
      @codebasics  4 роки тому +1

      yup next one will cover coding part

  • @Daniel-iy1ed
    @Daniel-iy1ed Рік тому

    This video was fantastic. Thank you

  • @akrsrivastava
    @akrsrivastava 3 роки тому

    Great explaination of NMS.

  • @izharkhankhattak
    @izharkhankhattak 3 роки тому +1

    Helpful. Nice work. Thank you so much.

  • @star_7776
    @star_7776 Рік тому

    Cool explanation, thanks!!

  • @yinwong667
    @yinwong667 3 роки тому

    1:40 Why do we need Pc anyway when it is completely depend on C1 and C2? What's the point of probability when it can only be 0 or 1?

  • @BinaraDarsha
    @BinaraDarsha 3 роки тому +3

    Great explanation of YOLO. And I need to say thank you for all your tutorials. I learnt a lot from you. Keep it up!

  • @work-dw2hl
    @work-dw2hl 3 роки тому +2

    sir i saw this video many times but i cant understand one point i.e iou and max probablity both are same what is the diffrence betwwen these 2 both give the same result

    • @olealoboluna
      @olealoboluna 2 роки тому

      he says at the beginning that prob isn't taken into account... and at last he says it is the criteria... so I'm confused!!!

    • @JJCotek
      @JJCotek 3 місяці тому

      I honestly don't get the IOU, but the max propability, just selects he bounding box with highest confidence threshold. Propabbly not elevant anwser after 3 years but maybe someone finds it helpful xd

  • @vamsikrishna-qc2xg
    @vamsikrishna-qc2xg 3 роки тому +3

    Really good explanation. I just have one doubt. How are bounding box measures calculated in yolo algo?

    • @emrahe468
      @emrahe468 2 роки тому

      yes, it is the million dollar question :)

  • @user-yp9lp3wq9u
    @user-yp9lp3wq9u 6 місяців тому

    Excellent 👍

  • @lianzhong3590
    @lianzhong3590 9 місяців тому

    Thank you so much for creating this video! You really explained everything clearly. I was looking for an explanation about YOLO on other platforms but no one could explain this as clearly as you have. May I ask if I can translate your video into Chinese and share it on a Chinese video platform for all the people who are interested in learning YOLO but failed to find an excellent video like this one? Really appreciate your effort in making this video.

  • @balipavankalyan5008
    @balipavankalyan5008 3 роки тому

    you made our life easier

  • @vipingautam9501
    @vipingautam9501 2 роки тому

    Exceptional.

  • @jinlinli4877
    @jinlinli4877 2 роки тому

    Good Video. However, I still have no idea how CNN can handle multiple anchors. Is there any paper that illustrates this technique?

  • @sshubam
    @sshubam 2 роки тому

    Thankyou Sir that was a very good and simple explanation of a complex algorithm :) Thankyousomuch sir

  • @sandragoa2379
    @sandragoa2379 Рік тому

    The best video!!

  • @shailendrayadav1138
    @shailendrayadav1138 10 місяців тому

    Excellent explanation

  • @dashsingh30095
    @dashsingh30095 Рік тому

    amazing content and good explanation

  • @nguyennhi8524
    @nguyennhi8524 Рік тому

    thank you so much for this, very easy to understand !

  • @yogeshbharadwaj6200
    @yogeshbharadwaj6200 4 роки тому +2

    Tks a lot sir, perfect explanation....

  • @keshavpatel559
    @keshavpatel559 Рік тому

    Amazing as always! Thank you for providing this information and helping unravel important topics

  • @EDeN99
    @EDeN99 3 роки тому +1

    Nice explanation!

  • @vinaykumardaivajna5260
    @vinaykumardaivajna5260 Рік тому

    Amazing explanation as always..

  • @AmmarAhmedSiddiqui
    @AmmarAhmedSiddiqui 8 місяців тому

    great video.. salute !

  • @TabarekSadiq
    @TabarekSadiq 8 місяців тому

    احسنت الشرح والتفصيل شكرا لك

  • @yasminbanu2597
    @yasminbanu2597 3 роки тому

    Nicely explained everything Thank you sir

  • @abimeenakannan2202
    @abimeenakannan2202 8 місяців тому

    Hi sir i have a doubt. You explained that the grid is considered to have an object only if the center of the bounding box is in that grid.But how do we find the boundung box and center, then?

  • @ASOUE
    @ASOUE Рік тому

    Great video!

  • @saicharanallenki7581
    @saicharanallenki7581 3 роки тому +1

    Great Explanation. Thank you

  • @vikidwi6935
    @vikidwi6935 3 роки тому

    Thanks for the explanation. It's help me alot to understand yolo 👍

  • @AnasHawasli
    @AnasHawasli 7 місяців тому

    Great explainaition

  • @kollurisharada5102
    @kollurisharada5102 3 роки тому

    Best explanation

  • @kipronoelijahkoech4630
    @kipronoelijahkoech4630 3 роки тому +1

    Brilliant!!!!!!!!!

  • @mendozamartinezjessenia9316
    @mendozamartinezjessenia9316 3 роки тому

    I really loved this video! Thank you!

  • @jeyak9719
    @jeyak9719 16 днів тому

    Doubt : after the model predictions non maximum suppression happens with respect to each grid (which is 4*4 here) IOU with predicted boxes... maximum prediction maintained..right

  • @arefeshghi
    @arefeshghi 3 роки тому +2

    The issue is that in multiple image classification, you assumed the center of the two objects (human and dog) as given. However, if I am correct, based on what you mentioned prior this point in the video, their center can be calculated after they are detected! Isn't this create a loop?

    • @cagrkaymak3063
      @cagrkaymak3063 3 роки тому

      I think center information is only provided during the training when we have the ground truth. During inference, model just predicts the bounding boxes

  • @mathewsjoy1572
    @mathewsjoy1572 2 роки тому

    wonderful video very informative

  • @azazmir5628
    @azazmir5628 4 місяці тому

    Great Sir

  • @tejaswinibandloor
    @tejaswinibandloor 3 роки тому +3

    Sir
    The explanation was very clear
    And can I get the ppt that you used in the explanation
    Thanks in advance

  • @bijaynayak6473
    @bijaynayak6473 Рік тому

    very nice explanation , btw either it will help to detect either brand logo is fake or not?

  • @봉봉-d8w
    @봉봉-d8w 2 роки тому +1

    Thank you 😇

  • @TSulemanW
    @TSulemanW Рік тому

    Nicely explain

  • @victorarayal
    @victorarayal Рік тому

    Is it possible to use it for regression and not clasification?

  • @tachyon7777
    @tachyon7777 2 роки тому

    Splendid!

  • @sghchannel4443
    @sghchannel4443 2 роки тому

    Today's best face detection algorithm?yoko also used in face detection?

  • @MvennelaLeelapadmavathi
    @MvennelaLeelapadmavathi Рік тому

    Can I give same image multiple times when train the model ?

  • @057ahmadhilmand6
    @057ahmadhilmand6 2 роки тому

    What if we want to detect am object when the Input given is a video? How to determine the bounding box location because the object itself is moving,

  • @vonderasche2963
    @vonderasche2963 3 роки тому

    Great explanation

  • @zahrahajalioghli8783
    @zahrahajalioghli8783 Рік тому

    Thank you for the practical tutorials.🙏🙏🙏
    I have the following questions:
    Can we use the saved weights from YOLOv7 instance segmentation for a classification problem?
    We have a binary classification problem with 500 images, one class having only 30 images and the rest belonging to the other class. Can we extract features using instance segmentation on the images with fewer samples and then use all the features for classification?

  • @ssw4m
    @ssw4m 2 роки тому

    Thanks, it's an excellent explanation, just what I needed.

  • @dataguy7013
    @dataguy7013 2 роки тому

    Excellent explanation, you teach these topics in such a way that even a layman can understand