Differential Equations of Motion

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ •

  • @MrSimmies
    @MrSimmies 4 роки тому +22

    This professor is terrific. I have a degree in mathematics but have learned a lot more re applications and Dr. Strang has no problem showing us where the math is useful. Bravo sir!

  • @zacraman
    @zacraman 7 років тому +25

    22:25 "Can I remember that dumb formula".
    Hahaha... I love hearing that from a math teacher!

  • @yussele
    @yussele 6 місяців тому +2

    Every time i watch this video, my understanding deepens. Thank you :)

  • @larwa8127
    @larwa8127 8 років тому +30

    I am a fan of prof. Strang's lectures but also got confused at 27'th minute, searched a little bit and I think this might be a help:
    We have two complex basic solutions of the second order equation:
    y_1 = e^{-3t}e{it} = e^{-3t}(cost+isint)
    y_2 = e^{-3t}e{-it} = e^{-3t}(cost-isint)
    and want to 'go back to real'....
    any combination (also with complex constants!) of y_1 and y_2 is also a solution.
    So take two such combinations of y_1 and y_2 that will result in a cancellation of imaginary:
    y_r1=(y_1+y_2)/2=e^{-3t}cost
    y_r2=(y_1-y_2)/2i=e^{-3t}sint

    • @zhihaotian6502
      @zhihaotian6502 7 років тому +2

      only when C is equal to D

    • @davidgheghia5408
      @davidgheghia5408 7 років тому

      Very useful supplement.

    • @husainzafar3445
      @husainzafar3445 6 років тому +4

      Further reading: tutorial.math.lamar.edu/Classes/DE/ComplexRoots.aspx

    • @erenozturk5796
      @erenozturk5796 4 роки тому +3

      e^(-3t)[C.(cos 3t + i.sin 3t) + D(cos 3t - i.sin 3t)] = e^(-3t) [(C+D)cos 3t + (C - D).i.sin 3t)] ->
      y= e^(-3t)[ A.cos 3t + B.sin 3t] for A=C+D, B= i.(C-D)
      What do you think?

    • @SAGARVERMARA
      @SAGARVERMARA 3 роки тому +1

      @@erenozturk5796 Dude that was very helpful. Thanks.

  • @shavuklia7731
    @shavuklia7731 7 років тому +6

    Yaaaayyyy, Strang teaching differential equations!! How lucky we, the students, are!

  • @NicolasFillion
    @NicolasFillion 12 років тому +4

    No, the formula is right. Normally, for a polynomial ax^2+bx+c=0, the solutions are x = [ -b +/- sqrt (b^2-4ac) ] /2a. In this case, we have ml^2 + 2r l + k =0. So the solutions are
    [ -2r +/- sqrt (4r^2 - 4mk) ] /2m, which simplifies to [ -r +/- sqrt( r^2-mk) ] / m, as in the lecture.

  • @TheAhassan
    @TheAhassan 9 років тому +8

    fantastic, I haven't had such a great instruction in my whole life.
    thanks for you generosity.

  • @AThomasKent
    @AThomasKent 8 років тому +5

    God, I love Gilbert Strang... such an amazing teacher

  • @georgesadler7830
    @georgesadler7830 3 роки тому

    This is a classical lecture on introductory differential equations. DR. Strang continues to strengthen my knowledge of mathematical tools and concepts.

  • @shakesbeer00
    @shakesbeer00 9 років тому +9

    At 27:28, the solution should be y(t) = Ae^(-3t)cost + i Be^(-3t) sint. The sint would not be cancelled out as C and D are not necessarily equal.

    • @ch.ajaysingh
      @ch.ajaysingh 8 років тому +2

      +shakesbeer00 yes i also think he missed out i.

    • @von-lk5jw
      @von-lk5jw 5 місяців тому

      yes i also think he missed out i.

  • @sathasiva1885
    @sathasiva1885 12 років тому

    Prof Strang is a world renowned mathematician with contributions to finite elements analysis and wavelets for instance.Prof Strang always reminded me of my former oxford educated mathematics professor for his accent and the ability to think on his feet as if he is doing it for the first time .Prof Strang spent some time at oxford as Rodes scholar if i my memory serve correct?

  • @tingxu8271
    @tingxu8271 8 років тому +5

    For the transform in 27'29", we may derive it in this way: y1 = A * [( exp((-3+i)t) + exp((-3-i)t) ) / 2] = A * exp(-3t) * cos(t); y2 = B * [( exp((-3+i)t) - exp((-3-i)t) ) / (2i)] = B * exp(-3t) * sin(t); y(t) = y1 + y2 = A * exp(-3t) * cos(t) + B * exp(-3t) * sin(t)

    • @ch.ajaysingh
      @ch.ajaysingh 8 років тому

      +Ting Xu i didn't get how you considered the two equations y1 and y2.
      I got that the values of lambda = -3 +/- i
      so y(t) will be y(t) = C*exp((-3+i)t + D*exp((-3-i)t now if you put the value of exp(it) and exp(-it) then you will get an "i" term at the last and non pure real terms.

    • @euccastro
      @euccastro 5 років тому

      IIUC the equality y(t) = y1 + y2 implies C = D = (A/2 + B/2i). So this seems to (i) require C=D, which y(t) doesn't guarantee, and (ii) hide the imaginary part in the C and D, where Strang claims this is a purely real formula.

    • @wraiths_
      @wraiths_ 4 роки тому

      @@euccastro he used the principle of superposition regarding homogeneous d.e. that is why the imaginary part is eliminated

  • @Krsnee
    @Krsnee 7 років тому +6

    Very nice explanation ... Thanks a lot sir for your time.

  • @Amine-gz7gq
    @Amine-gz7gq Рік тому

    Best video on the subject ! At 27:26, B is a complex number isn't it ?

  • @stan021
    @stan021 12 років тому +1

    he is a very good teacher.

  • @maoqiutong
    @maoqiutong 5 років тому +1

    27:18 Professor Strang, how did you cancel out the virtual part? The cancellation should be given that C = D I think.

    • @naveensundar4765
      @naveensundar4765 4 роки тому +1

      We have two complex basic solutions of the second order equation:
      y_1 = e^{-3t}e{it} = e^{-3t}(cost+isint)
      y_2 = e^{-3t}e{-it} = e^{-3t}(cost-isint)
      and want to 'go back to real'....
      any combination (also with complex constants!) of y_1 and y_2 is also a solution.
      So take two such combinations of y_1 and y_2 that will result in a cancellation of imaginary:
      y_r1=(y_1+y_2)/2=e^{-3t}cost
      y_r2=(y_1-y_2)/2i=e^{-3t}sint

  • @NicolasFillion
    @NicolasFillion 12 років тому

    We normally write ax^2 + bx + c =0, and get the solutions x = (-b +/- sqrt( b^2 - 4ac) ) / 2a. He, the equation is ml^2 + 2r l + k =0. This is a second degree equation in the variable l. In this case, what corresponds to the coefficient b of the equation ax^2 + bx + c = 0 is the coefficient of l, namely, 2r. Now, what is (2r)^2? It is 4r^2. And this is where the 4 comes from. Does it help?

  • @MrZorro08
    @MrZorro08 5 років тому

    Beautiful explanation. Thanks Dr. Strang.

  • @lakhdarlakhdar8001
    @lakhdarlakhdar8001 5 місяців тому

    Thanks for this clear demonstration

  • @akarshroy4461
    @akarshroy4461 7 років тому

    It's Amazing lecture ,, by this PARTICULAR LEGEND mathematician,,,,,

  • @surendrakverma555
    @surendrakverma555 3 роки тому

    Excellent lecture 🙏🙏🙏🙏

  • @TheAhassan
    @TheAhassan 9 років тому

    fantastic, I haven't had such a great instruction in my hole life.
    thanks for you generosity.

    • @husainzafar3445
      @husainzafar3445 6 років тому

      Maybe because you were living in a hole? Sorry, just kidding, saw your other comment with the correction

  • @dr.muhammadmuzahidmuzahid3420
    @dr.muhammadmuzahidmuzahid3420 9 років тому +3

    fantastic Profesor!

  • @zacshavrick
    @zacshavrick 12 років тому +1

    Got it, thanks!
    One other thing you might be able to clear up,
    I was confused about the same thing as JanisMac314 who asked: at minute 27:24 " I.. have found the coefficient B to have an imaginary in it
    (comming from i*sin t )"
    Where professor Strang states that the equation is meant to go back into it's real form.

    • @akshaybtachaparambil4386
      @akshaybtachaparambil4386 4 роки тому

      i came to this lecture searching an answer for this question. Did you get that?

  • @ahmedatifabrar7698
    @ahmedatifabrar7698 11 місяців тому

    This video should be preceded by Differential Equations of Growth video.

  • @janismac314
    @janismac314 12 років тому +1

    27:24 "back to real"
    really? I have tried it and found the coefficient B to have an imaginary in it
    (comming from i*sin t )
    can someone explain please?

    • @akshaybtachaparambil4386
      @akshaybtachaparambil4386 4 роки тому

      i came to this lecture searching an answer for this question. Did you get that?

  • @zacshavrick
    @zacshavrick 12 років тому

    where does the 4 come from in the 4r^2

  • @yashagnihotri6901
    @yashagnihotri6901 5 років тому

    Was he teaching the students , how to solve diffrential equations or was he just revising them of the previously taught forms of D.E. ?

  • @davidgheghia5408
    @davidgheghia5408 7 років тому +2

    Fantastic! Just fantastic!

  • @christopherpimentel347
    @christopherpimentel347 9 років тому

    wow I wish my professors were as smooth as this was!

  • @FaduuaJonattiCa
    @FaduuaJonattiCa 12 років тому

    hi, someone knows some good video about dynamic optimitation?
    tnx

  • @rgwkenyon
    @rgwkenyon 8 років тому +1

    I too can't see where the i went in the B part at minute 27. He rushed that part anf its the critical bit!!!

  • @JC-cr5ty
    @JC-cr5ty 7 років тому

    Dang. It seems like MIT profs. make it so easy to learn. Any other school, you'd be teaching yourself out of the book.

  • @cesfigas
    @cesfigas 13 років тому

    Gilbert strang is like a father to me..... :-)

  • @laker4life36
    @laker4life36 3 роки тому

    2010: a good time to live.

  • @UniverseOffspring
    @UniverseOffspring 13 років тому

    @cesfigas Yes, he is an amazing teacher.

  • @Eduardabiomol
    @Eduardabiomol 13 років тому +1

    Brilliant!

  • @RiyadhElalami
    @RiyadhElalami 12 років тому

    Couldn't we solve the second one with -e^-Wt

  • @BentHestad
    @BentHestad 6 років тому

    God bless you, Gilbert Strang!

  • @GoatzAreEpic
    @GoatzAreEpic 2 роки тому

    I got differential equation next semester, but this lecture is still a bit too new for me to fully understand

  • @minorzaco
    @minorzaco 2 роки тому

    Oro puro

  • @Gkuljian
    @Gkuljian 8 років тому +1

    30 years after trying to learn it the first time, and realizing it ain't gonna happen. I'll just stick to solids modeling. No supersonic jet designs for me.

  • @elamvaluthis7268
    @elamvaluthis7268 4 роки тому

    Very nice

  • @herrzyklon
    @herrzyklon 12 років тому

    Seems like a nice guy

  • @liesmoon
    @liesmoon 12 років тому

    thank you very much

  • @R00KIEo87
    @R00KIEo87 3 роки тому

    The equation is z( k o)=t

  • @creamcheese3596
    @creamcheese3596 3 роки тому

    All this is trivial basic maths.

  • @ltcolkenboston7979
    @ltcolkenboston7979 9 років тому

    Likes God....

  • @SCLCursoNota10
    @SCLCursoNota10 12 років тому +1

    There's a fatal error in this lecture: the quadratic formula used misses two numbers:
    There's a fatal error in this lecture: the quadratic formula used misses two numbers:
    4 to multiply K(that's a constant number) in the square root and 2 to multiply m(same case). If you insert any example, including the ones he mentioned, if not using them, the results will not coincide, therefore the formula in the lecture is wrong!

    • @carl3260
      @carl3260 4 роки тому +1

      No, this is accounted for since the coefficient of x is "2r" (which would be used in the standard quadratic formula) but "r" is picked up in his adjusted quadratic formula, ie the x coefficient is halved from 6 to 3, which takes account of the 2 and 4 factors you mention.

  • @TheMehmetTosun
    @TheMehmetTosun 7 років тому

    Biri tercüme etsin lan :D