[Visual] Complex Trigonometric Functions Visualised

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 25

  • @zakerysimpson5363
    @zakerysimpson5363 4 місяці тому

    This animation is second to none in expressing how supremely smooth functions are where they're analytic. Brilliant work!

  • @dereathacross1991
    @dereathacross1991 Рік тому +1

    I'm so glad I discovered these.

  • @J.M.S.Simoes-Pereira
    @J.M.S.Simoes-Pereira 3 роки тому +2

    Eu sou matemático, professor na Universidade de Coimbra!
    Parabens pelo trabalho!

  • @FlyingSavannahs
    @FlyingSavannahs 4 роки тому +5

    I love the rendering! It looks to me like the work of a master glassblower with mad skills in a much higher plane of existence. My "they always want more" thought, though, was wishing we would fly through one of the sin and cosine arches. Or better yet, a slalom route around all the zeros! ...And a swoop into the valley, too!
    Ok, fire up the compute farm and get ready to spend $160 in electricity!
    Thanks as always for the beautiful work!

    • @TheMathemagiciansGuild
      @TheMathemagiciansGuild  4 роки тому +2

      Thanks!! Expect a cos fly-through in the next video of the main series. (It won't be glass though, something a little new). I love the slalom idea!

    • @jennycotan7080
      @jennycotan7080 Рік тому

      The sine and cosine complex surfaces seem to be an epic challenge for stunt skaters.

  • @cypheruniversity3074
    @cypheruniversity3074 3 роки тому +1

    Thank you for your labor. I definitely have already applied this to my theory crafting and storytelling. You have done a remarkable service 🐕‍🦺

  • @zigzagzwag
    @zigzagzwag 4 роки тому +1

    Your videos and effort go tragically unappreciated. Not sure what to make of this information but this is far out✌️

  • @KaliFissure
    @KaliFissure 6 місяців тому

    Surface(cos(u/2)cos(v/2),cos(u/2)sin(v/2),sin(u)/2),u,0,2pi,v,0,4pi
    Notice that 4 pi are needed to complete the surface. This is a single sided closed surface. The radially symmetric Klein bottle.

  • @UwU-rn8xo
    @UwU-rn8xo 3 роки тому +1

    Those are some beatiful shots. Also i finally know what this stuff is my PC is rendering on SheepIt all the time :D

  • @guill3978
    @guill3978 4 роки тому +1

    Can we integrate them like a function z=f(x,y)? How must we do that?

    • @Kasamori
      @Kasamori 4 роки тому +1

      If f(t) = u(t)+iv(t) where u(t) gives the real part and v(t) gives the imaginary part
      then ∫ f(t) dt = ∫ (u(t) + i v(t)) dt = ∫ u(t) dt + i ∫ v(t) dt.

    • @Kasamori
      @Kasamori 4 роки тому

      Assuming t = x+iy in your example

    • @Kasamori
      @Kasamori 4 роки тому

      Now i'm wondering if this actually helps, I need to take some time on this :D

    • @guill3978
      @guill3978 4 роки тому

      @Nimbo Stratus The key should be to derive it.

  • @brendawilliams8062
    @brendawilliams8062 2 роки тому

    Gorgeous

  • @NonTwinBrothers
    @NonTwinBrothers 4 роки тому +4

    Must've taken ages to render!

    • @TheMathemagiciansGuild
      @TheMathemagiciansGuild  4 роки тому +4

      Yes it did!!! 4-5 mins per frame on a 64-core CPU. There are around 10,000 frames. Mostly, it was done on a render farm, I did around 2000 myself.

    • @theunknown4834
      @theunknown4834 4 роки тому +4

      @@TheMathemagiciansGuild Can you show us a way to get this?

  • @alexanderwermlund3145
    @alexanderwermlund3145 4 роки тому +2

    Am i a true math lover now? Jokes aside that render is impressive

  • @LaVoie26
    @LaVoie26 4 роки тому +1

    Now try the mandorbolt 😅😅😅 and watch it predict were you wanna go

  • @amansingh-ww2qc
    @amansingh-ww2qc 2 роки тому

    Bhai galgotia m aaja ek din k lie sab maths le lenge

  • @jeremx7094
    @jeremx7094 4 роки тому

    That’s weird