Fermat's Little Theorem

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 78

  • @rishith4346
    @rishith4346 Рік тому +47

    The simplest way to solve P=11, a=5
    *We need to check P should always be a prime number ! *
    Formula=] a^p-1 congruent (1modp)
    5*11-1=(1mod11)
    5*10=(1 mod11)
    The rule for fermat Little problem is
    The number which is in the left should always be larger than the number which is right of equal to sign
    So in this case its not satisfying the given condition so we divide it using modular methods
    The number 5 is subtracted, with p and written as -6 on the right hand side...
    -6*10=1mod11
    Now we split the power of ten
    As (2*5)
    (-6^2)(*5)=1mod11
    36(*5)=1mod11
    Now 36mod11=3
    3(*5)=1mod 11
    Mod of 3*5 mod 11= 1
    Now 1=1mod 11
    Its congruent
    P=11 and a=5 proved !

  • @shivamkandhare8897
    @shivamkandhare8897 2 роки тому +38

    Fermat's theorem holds true for p=11, a=5
    And thanks for this presentation!

  • @sanika6916
    @sanika6916 Рік тому +7

    NESO ACADEMY YOU ARE LITERALLYY A SAVIOUR!!!! THANKYOU SO MUCH.

  • @rajeshprajapati4863
    @rajeshprajapati4863 2 роки тому +52

    5^10 ≡ 1 mod 11
    5^(2*5) ≡ 1 mod 11
    3^5 ≡ 1 mod 11
    243 ≡ 1 mod 11 (Valid)
    Therefore, FLT holds true for p=11 and a=5.

    • @sivasaigunta8924
      @sivasaigunta8924 2 роки тому +1

      3 ala vachindi bro miku

    • @ashutoshpatil7330
      @ashutoshpatil7330 Рік тому +2

      @@sivasaigunta8924 how ??

    • @janpost8598
      @janpost8598 Рік тому +2

      ​@@ashutoshpatil7330 5^(2*5) = (5^2)^(5) now 5^2 ≡ 3 mod 11.
      5^(2*5) ≡ 1 mod 11
      (5^2)^(5) ≡ 1 mod 11
      (3)^(5) ≡ 1 mod 11
      Hence 3^5 ≡ 1 mod 11

  • @user_unknown04
    @user_unknown04 Місяць тому +2

    Answer for the HW problem in the easiest way possible:
    5^10 = 1 (mod 11)
    will first find 5^1 mod 11 = 5
    now 5^2 mod 11 = 3
    now 5^4 is simply 5^2 x 5^2, that is 3 x 3 = 9
    now 5^8 is simply 5^4 x 5^4, that is 9 x 9 = 81
    we need 5^10 now, we can write it as 5^8 x 5^2, which is 81 x 3, gives us 243
    now 243 mod 11, will result in 1 !.
    Hence fermat's little theorem satisfied.

  • @lakshitapatnaikuni2143
    @lakshitapatnaikuni2143 2 роки тому +12

    12 is congurent to 1 (mod 11) which shows Fermat's theorem holds true for p=11,a=5
    Thanks for the explaination:)

    • @Stocks_Technical_Analyser
      @Stocks_Technical_Analyser Рік тому +1

      Your point shows some deep knowledge.
      Can you please explain it ?

    • @dsalgos
      @dsalgos 9 місяців тому

      @@Stocks_Technical_Analyser I tried solving step by step and one of them is
      12 = 1 (mod 11)
      5^10 = 1 (mod 11) => 3^5 = 1 (mod 11) => 81 x 3 = 1 (mod 11)
      => 12 = 1 (mod 11)
      Proved.

  • @abadsoofi
    @abadsoofi 27 днів тому +1

    P=11
    a=5
    1)p is prime
    2)a is an integer not divisible by p 11
    a^p-1=1modp
    5^10=1mod11

  • @Ritesh_kumar773
    @Ritesh_kumar773 Рік тому +9

    Given p=11 ,a=5
    a^p-1 = 1(mod11)
    5^11-1 =1(mod11)
    5^10 =1(mod11)
    -6^10 =1(mod11) {5-11= -6}
    -6^5*2 =1(mod11) {6^5=7776 is ÷ by 11 and remainder is 10
    10^2 =1(mod11)
    100 =1(mod11) {100÷11 and remainder should be 1}

  • @thanmaijami8962
    @thanmaijami8962 3 роки тому +44

    Fermat's theorem holds true for p=11, a=5

  • @G.VISHNUTEJA24BSD702
    @G.VISHNUTEJA24BSD702 24 дні тому

    excellent explanation

  • @markuche1337
    @markuche1337 Рік тому +2

    Very great course thank you Neso Academy ❤

  • @sahilanand30
    @sahilanand30 2 роки тому +5

    3:28 anyone noticed Indian flag? 🇮🇳

  • @СанжарАлманов-т3с

    Thank you man, really helpful video!

  • @monicabattacharya6416
    @monicabattacharya6416 3 роки тому +13

    please complete Database management systems fastly. I have in my current semester 😩

  • @danieldanmola8266
    @danieldanmola8266 5 місяців тому

    Fermat little theorem holds for
    a= 5 and p=11
    By the Fermat little theorem
    a^(p-1)=1(mod p)
    5¹⁰=1(mod 11)
    Let's check using the Euler phi totient function
    Which states that a^phi(n)=1(mod n)
    Provided that GCD of (a, n)=1
    And in this case a=5 and n=11
    Thus :::
    5^phi(11)=1(mod 11)
    Since the phi(11)=11-1=10
    5¹⁰=1(mod 11)
    Thus Fermat little theorem holds

  • @ANMOLKUMAR-ix8di
    @ANMOLKUMAR-ix8di Рік тому

    p=11 , a=2 , It holds fermet's little theorem (homework question answer)

  • @victorymindset-1
    @victorymindset-1 2 місяці тому +2

    can someone say how -2^(4*3) congruent 1 (mod 13)
    changes to 3 ^ 3 congruent 1 (mod 13)

  • @shivambhardwaj1137
    @shivambhardwaj1137 2 роки тому +3

    Fermat theorem true value for p=11 and a=5

  • @ajay.2461
    @ajay.2461 2 роки тому +3

    P=15 and a=4 it's not holding false it's holding true

  • @BookwormUnited
    @BookwormUnited Рік тому +3

    For home work question I guess
    p=11 and a=5
    so we are using a^p-1=1 mod p
    5^11-1=1mod 11
    5^10=1 mod 11
    then 5 is smaller than 11 so we are reduce 11 from 5 is 6
    -6^10=1 mod 11
    -6^5*2 = 1 mod 11
    here 6^5 = 7776
    then divide by 11 so we will get remainder 10
    10^2 = 1 mod 11
    100 = 1 mod 11
    here 100/ mod 11 = 1
    so 1= 1
    hence proved ..
    if it's correct like this comment ..😊

  • @chamin111
    @chamin111 Рік тому

    Thank you sir, nice explanation

  • @balajimetla3886
    @balajimetla3886 Рік тому

    nice explanation sir. continue like in this way

  • @aathavang5505
    @aathavang5505 6 місяців тому

    How to solve by using Fermat's theorem, if the question is 27^452 mod 113?

  • @AkashKumar-ff6mx
    @AkashKumar-ff6mx 2 роки тому

    THANKS FOR THIS VIDEO

  • @garunkumar8921
    @garunkumar8921 2 роки тому +1

    Fermat's Theorem hold true for p=11 and a=5 sir

  • @AkashKumar-ff6mx
    @AkashKumar-ff6mx 2 роки тому

    Thanks for this video

  • @gaurav561crazy5
    @gaurav561crazy5 3 роки тому +1

    Start the series of calculus

  • @IMdrummerTab
    @IMdrummerTab Рік тому

    This is great! Thanks❤

  • @தமிழன்-ர8ள
    @தமிழன்-ர8ள 11 місяців тому

    Hold true p=11 and a=5

  • @jesusbosch2720
    @jesusbosch2720 13 днів тому

    Mmm I am not satisfied this video. I see exercises in my classbook that ask me to calculate thibgs like 97 power 200 + 97 power 201 mod 13 (or similar operations with huge exponents). I am explicitly asked to use fermat’s little theory (not the modular exponentiation method used in previous videos). Any advice please?

  • @vrajpatel8302
    @vrajpatel8302 2 роки тому +1

    Yes

  • @kowshik_reddy_iguturi
    @kowshik_reddy_iguturi Рік тому

    5^10=1mod11
    Rem=1
    True

  • @nasserkhamis1690
    @nasserkhamis1690 Рік тому

    is there a way to check my answer using a calculator ?

  • @KuladeepGompa
    @KuladeepGompa 11 місяців тому

    why did you take -2 in the place of 11 in the second example

    • @love_in_nature8616
      @love_in_nature8616 10 місяців тому

      Because 11 mod 13 is 11 or -2, among them min(abs(-2, 11)) is considered... So it is -2.

  • @Junedwrites
    @Junedwrites 3 роки тому +6

    Love you sir 🤗 , from🇮🇳🇮🇳🇮🇳

  • @angelicaaquino2159
    @angelicaaquino2159 2 роки тому +1

    What if p is not prime number?

    • @zanti4132
      @zanti4132 2 роки тому +2

      If p is not prime, you will usually get a^(p-1) ≠ 1 mod p, but not always. For example, if a = 2 and p = 11 × 31 = 341, you can show 2³⁴⁰ = 1 mod 341 as follows:
      2³⁴⁰ = (2¹⁰)³⁴ = 1024³⁴. However, 1024 = 1 mod 341, therefore 2³⁴⁰ = 1³⁴ mod 341 = 1 mod 341, q.e.d. Hence, once in a great while a composite number gives the same result as a prime number for certain values of a, making the composite number what's known as a pseudoprime in base a. There are even composite numbers for which a^(p-1) = 1 mod p regardless of the value chosen for a. These numbers are known as Carmichael numbers, the smallest of which is 561.

  • @tiamiyuyusuff234
    @tiamiyuyusuff234 Рік тому

    Fermat's little theorem holds for p=11 and a=5.

  • @Utkarshkushwaha-ld8xh
    @Utkarshkushwaha-ld8xh 2 місяці тому

    Yes bcz remainder is 1 Buddy

  • @KaivalyaGawande
    @KaivalyaGawande 3 місяці тому +6

    Who are from class 11th 😅

  • @mihirmathur5855
    @mihirmathur5855 2 роки тому +1

    Fermat's Theorem holds true for p=11 and a=5

  • @udayakiran8965
    @udayakiran8965 Рік тому

    Fatmet theorem hold ? P=3, a=3

  • @mohankumarmuthukumar2949
    @mohankumarmuthukumar2949 11 днів тому

    Fermat theorem true for given value

  • @chandukmit
    @chandukmit 2 роки тому +1

    True, tqs

  • @hanishvenkat9496
    @hanishvenkat9496 9 місяців тому

    super

  • @SmirthikaShri
    @SmirthikaShri 11 місяців тому

    Y88

  • @raghavsingh4257
    @raghavsingh4257 2 роки тому +1

    1

  • @karunkarna9397
    @karunkarna9397 3 роки тому

    nice

  • @vaibhavsharma9318
    @vaibhavsharma9318 Рік тому +1

    5^10 = -6^10 = -6^2*5 = 12^5 = 1^5
    If you think how 12 becomes 1 ,the reminder of 12÷11 or 11÷12 😅 is 1
    Then the reminder of 1÷11 or 11÷1 🤫 is 1
    So the fermat theorem is true
    Hence proved

  • @BhojpuriWorld14314
    @BhojpuriWorld14314 3 роки тому

    fermat's theorem does not hold ture for p=11 and a=5

  • @ayeshasiddika8552
    @ayeshasiddika8552 2 роки тому +1

    1