A Very Nice Radical Simplification l Olympiad Mathematics l Easy & Tricky Solution

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ • 14

  • @michaeldoerr5810
    @michaeldoerr5810 2 дні тому +1

    The answer is 1/2[sqrt(14)+sqrt(10)]. This is an example of a number theory adjacent radical simplification. One that requires knowing what a semiprime really is. I shall find similar and use that in order to *become* a mathematician!!!

  • @novellobrancher9627
    @novellobrancher9627 2 дні тому +3

    Brilliant solution!👍👍👍

  • @ЭдуардПлоткин-р3л
    @ЭдуардПлоткин-р3л 2 дні тому +1

    Есть более понятное и лёгкое решение.Могу научить блогера.

  • @toveirenestrand3547
    @toveirenestrand3547 2 дні тому

    Observing that sqrt35 = sqrt7*sqrt5 = 2*sqrt(7/2)*sqrt(5/2). Then seeing that 6 = 12/2 = [sqrt(7/2)]^2 + [sqrt(5/2)]^2 = 7/2 + 5/2 = 12/2 = 6.
    Thus sqrt(6 + sqrt35) = sqrt[7/2 + 5/2 + sqrt7*sqrt5] = sqrt{[sqrt(7/2)]^2 + [sqrt(5/2)]^2 + 2*sqrt(7/2)*sqrt(5/2)} = sqrt{[sqrt(7/2) + sqrt(5/2)]^2} = sqrt(7/2) + sqrt(5/2).

  • @SantiagoCurti
    @SantiagoCurti 2 дні тому

    Mas o menos como cortarte un brazo para que no te duela un dedo.

  • @carloshenriquepf
    @carloshenriquepf 2 дні тому +1

    Na década de 80, eu me deparava com esse tipo de questão em provas militares, não sabia resolver. Eu não tinha onde pesquisar , hoje, encontramos fácil na internet soluções de questões difíceis.
    A Internet é um prato cheio de conhecimento para quem quer aprender.

  • @07Pietruszka1957
    @07Pietruszka1957 2 дні тому +2

    Neat transformations, but they don't give anything because there are still two roots to calculate. So what's the point of all this?

    • @ivanakatjahaarov3897
      @ivanakatjahaarov3897 5 годин тому

      The point would be to remove the nested root. Much like the point of rationalising the denominator is to move a root from the bottom to the top of a fraction. It’s easier to deal with in further calculations.

  • @ivanakatjahaarov3897
    @ivanakatjahaarov3897 5 годин тому

    Why are you using implication symbols (=>) between expressions? Each expression is exactly equal to the one before, so denote this with the equality symbol (=).

  • @문병인-r8u
    @문병인-r8u День тому

    let sqrt(6+sqrt 35) = x, sqrt(6-sqrt35) = y, then xy=1, x^2 + y^2 = 12, (x+y)^2 =x^2+y^2 +2xy = 12 + 2 =14 , so x+y=sqrt14 (x, y>0)
    so, y=sqrt14-x ....xy=x(sqrt14-x)=1 -->x^2-(sqrt14)x +1 =0 --> x=(sqrt14 +sqrt10)/2 ( x>0)

  • @QuentinStephens
    @QuentinStephens 2 дні тому

    You have a notation error at 6:48 - the lower line should be SQRT(2) x SQRT(2), not SQRT (2 x 2).