Calculus 1: Maximum & Minimum Values Part 1 (Section 4.1) | Math with Professor V

Поділитися
Вставка
  • Опубліковано 7 лют 2025

КОМЕНТАРІ • 19

  • @nolowmoshodi_
    @nolowmoshodi_ 4 місяці тому +2

    4 years later and this is still very helpful, writing my exam tomorrow. Thank you so much.

  • @sohahaniyyah6762
    @sohahaniyyah6762 3 місяці тому

    These videos deserve millions of views. Thank you so much for these Professor V!

    • @mathwithprofessorv
      @mathwithprofessorv  3 місяці тому

      You're very welcome! Hopefully soon! 🙏🏻🙏🏻🙏🏻

  • @pu11.__23
    @pu11.__23 Рік тому +1

    These videos are so underrated, love from India 🇮🇳

  • @AtikaTahsinSaba
    @AtikaTahsinSaba 3 роки тому +2

    5:26 this note is what I needed and have been looking for ages🤩🤩🤩

    • @mathwithprofessorv
      @mathwithprofessorv  3 роки тому +1

      Yay so glad you found it! 😊

    • @AtikaTahsinSaba
      @AtikaTahsinSaba 3 роки тому +2

      @@mathwithprofessorv thanks you so much for your amazing lecture🙏🥰✨I hope more people will come to find your video and be benefitted

    • @mathwithprofessorv
      @mathwithprofessorv  3 роки тому

      I would love that! It is my goal to help as many students around the world as possible! ☺️

  • @Jacobpeng-p4f
    @Jacobpeng-p4f 3 місяці тому

    Can the start points be local max or min?Thank you

  • @Maya-xs9xn
    @Maya-xs9xn 3 роки тому

    Absolutely love your clear explanation. Gracias.

  • @sanly9254
    @sanly9254 Рік тому

    amazing lesson as per usual! thank you so much 💕

    • @mathwithprofessorv
      @mathwithprofessorv  Рік тому

      You’re so welcome!!! Make sure you finish watching part two before you watch the video I put up on Patreon today. 😊👍🏻

  • @835am
    @835am Рік тому

    9:24 question: why don't we count f(1) = 5 as our local max? or f(0) = 2 as a local max? I'm sorry, I'm kind of confused,

    • @fluffyeyes4
      @fluffyeyes4 Рік тому +1

      Because it is increasing from one side of the point and increasing on the other side. Thus, f(1)=5 would technically be either a local min or local max. Maybe watch 3:05. Hope that helps.

  • @mclovin6537
    @mclovin6537 2 роки тому

    why is f(c) a local min? It is a sharp point. A sharp point does not have a f'(c) = 0?

    • @mathwithprofessorv
      @mathwithprofessorv  2 роки тому

      No. But f’(c) DNE there which makes c a critical point and we can see it is a local min.

    • @mclovin6537
      @mclovin6537 2 роки тому

      @@mathwithprofessorv Ah yes sorry my mistake. I was confusing it with fermat's theorem.