Linearisation Technique & First Method of Lyapunov | Nonlinear Control Systems

Поділитися
Вставка
  • Опубліковано 13 гру 2024

КОМЕНТАРІ • 23

  • @soumikdey5391
    @soumikdey5391 3 роки тому

    great initiative......quality lectures in short time and it is easy for students to understand due to ample numericals.

    • @soumikdey5391
      @soumikdey5391 3 роки тому

      please try to put more videos....it will surely connect many students.

    • @Topperly
      @Topperly  3 роки тому

      Thank you for your mind words :)

    • @akashsingh2722
      @akashsingh2722 Рік тому

      @@Topperly kind*

    • @Topperly
      @Topperly  Рік тому

      Haha....sorry for the typo

  • @animeshsinghal3405
    @animeshsinghal3405 3 роки тому

    While moving from equation at 5:35 to 8:15, where did the two more terms Xe(t)_dot and f(Xe, Uo) go?
    They just vanished. h( ) disappearing makes sense as it's limit tends to zero.

    • @Topperly
      @Topperly  3 роки тому +1

      Please compare LHS and RHS.
      LHS : Xe(t)_dot + dx(t)_dot
      We also know x(t)_dot = f(x(t),u).
      So using this knowledge, Xe(t)_dot = f(Xe(t), Uo).
      So the rest of the terms in RHS will be dx(t)_dot.
      Hope this clarifies :)

    • @animeshsinghal3405
      @animeshsinghal3405 3 роки тому

      @@Topperly Thank you so much! It took me a while to figure out why are those two terms equal to each other but now it is clear (it was the first equation of that section). Then they cancel each other.
      Really appreciate all the example that you provide between the theory. Also grateful for the promt response. Thank god I choose your videos to learn this.

  • @nitinbabu2672
    @nitinbabu2672 Рік тому

    Wow great video. I'm a 3rd year aerospace engineering student (I'm final year of bachelors), I'm doing an individual project on non-linear control, specifically sliding mode control. Do you have any resources that explain the concept in the same manner as your videos that very easy to follow and understand? This is usually a masters course so I have not studied this, and the videos available online delve deep into the maths too quickly that I can't follow, like I see symbols Ive never seen before. Please reply. Thanks

    • @Topperly
      @Topperly  Рік тому

      1. Applied Nonlinear Control by Slotine and Li - amzn.to/2Ed8Rw6
      2. Nonlinear Control Systems by Alberto Isidori - amzn.to/3l5VeQv
      3. Nonlinear Systems by Hassan K Khalil - amzn.to/3aG0zsA
      These are some great sources I use for my studies. Please see if they help :)

  • @Juanchogamer5000
    @Juanchogamer5000 4 роки тому +1

    Hello, thank you for the explanation also can you add subtitles please?

    • @Topperly
      @Topperly  4 роки тому +2

      We'll try to add subtitles :)

    • @Topperly
      @Topperly  4 роки тому +9

      Subtitles are done :)

  • @Mohanbhaikipadhai
    @Mohanbhaikipadhai 2 роки тому

    I love it 🥰

    • @Topperly
      @Topperly  2 роки тому

      Glad to hear that :)

  • @mscourseiit-k7538
    @mscourseiit-k7538 3 роки тому +1

    TO DEFINE EQB POINTS WE PUT STATE EQN =0

    • @Topperly
      @Topperly  3 роки тому

      Yes, you are right. :)

  • @abhishektambewagh6156
    @abhishektambewagh6156 4 роки тому +1

    How did you determine X1 = nπ

    • @Topperly
      @Topperly  4 роки тому

      We obtain our equilibrium points by equating the state equations to zero. Equating the first equation to zero gives us x2 = 0. Now plugging this x2 = 0 into second equation gives us sin(x1)=0 and this is satisfied when x1=nπ. So our equilibrium points are (nπ,0).

    • @abhishektambewagh6156
      @abhishektambewagh6156 4 роки тому

      @@Topperly thank you

  • @HarishKumar-wu8cv
    @HarishKumar-wu8cv 4 роки тому

    Mam Plse provide PDF notes of lecture

    • @Topperly
      @Topperly  4 роки тому

      Sorry! We don't have notes.