Can you find the area of the Purple shaded region? | (Step-by-step explanation) |

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 69

  • @bigm383
    @bigm383 10 місяців тому +4

    Thanks Professor, another great problem!😀🥂

    • @PreMath
      @PreMath  10 місяців тому +1

      Glad you think so!
      Thanks ❤️
      Happy, safe, and prosperous New Year!

    • @AndreasPfizenmaier-y7w
      @AndreasPfizenmaier-y7w 4 місяці тому

      Not really a Problem…

  • @BesseDenmark
    @BesseDenmark 10 місяців тому +12

    I calculated area of semicircle and then subtracted are of triangle AOC and subtracted area of sector BOC.

    • @PreMath
      @PreMath  10 місяців тому +1

      Great job!
      Thanks ❤

    • @Copernicusfreud
      @Copernicusfreud 10 місяців тому +1

      That is how I did it too.

  • @georgebliss964
    @georgebliss964 10 місяців тому +5

    I did angle ACO also = 15 degrees, since AO = OC = 8 = isosceles triangle, and also angle AOC = 150 degrees.
    Then its area = 1/2 x 8 x 8 x sin 150 degrees = 32 x 0.5 = 16.
    Area of sector including this triangle = Pi x 8^2 x 150 / 360 = 83.7758.
    Thus Purple area = 83.7758 - 16 = 67.7758.

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks ❤️

  • @RajendranPK
    @RajendranPK 10 місяців тому +3

    Area of triangle=1/2×8×8×sin150

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks ❤

  • @AmirgabYT2185
    @AmirgabYT2185 9 місяців тому +1

    S=(16(5π-3))/3≈67,7

  • @ybodoN
    @ybodoN 10 місяців тому +3

    The formula for the area of a circular segment is ½ R² (θ − sin θ) with the angle θ in radians.
    If R = 8 and θ = 150° = ⅚ π rad so sin θ = ½, then the purple shaded area is 16/3 (5π − 3) u².

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @marioalb9726
    @marioalb9726 10 місяців тому +1

    Circular segment area:
    A = ½.R².(α - sin α)
    R = 16/2 = 8 cm
    α = 180° - 2 . 15° = 150°
    A = ½ 8² (150° - sin 150°)
    A = 67.776 cm² ( Solved √ )

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @prossvay8744
    @prossvay8744 10 місяців тому +1

    Connect o and c
    OA=OC=8
    triangle AOC is isolated
    Angle OAc=OCA=15
    Angle AOC=150
    Angle. BOC=180-150=30
    Area of the semicircle=1/2(π)(8^2)=32π
    Area of the triangle AOC=1/2(8^2)sin(150)=(32)(1/2)=16 square units
    Area of the BOC=30/360(π)(8^2)=16π/3
    Area of the purple shaded region=32π-(16+16π/3)=80π/3-16=67.78 square units. Thanks ❤❤❤

    • @PreMath
      @PreMath  10 місяців тому

      Awesome!
      Thanks ❤🌹

  • @quigonkenny
    @quigonkenny 6 місяців тому

    The purple area is a circular segment, which is a circular sector subtended by a chord, minus the triangle formed by that chord and the center of the circle. In this case, as ∠A = 15° and A is on the circumference, the angle of arc CB is 30°, so the sector and chord AC cover 180°-30° = 150°.
    Purple area:
    A = (θ/360)πr² - absin(θ)/2
    A = (150/360)π(8²) - 8(8)sin(150°)/2
    A = (5/12)π(64) = 64(1/2)/2
    A = 80π/3 - 16 ≈ 67.78 sq units

  • @marioalb9726
    @marioalb9726 10 місяців тому +1

    A = A₁ - A₂ - A₃
    A = ½πR² - ½R²sinα - ½αR²
    A = ½R² (π - sin30°- 30°π/180°)
    A = 67,756 cm² ( Solved √ )

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @philipkudrna5643
    @philipkudrna5643 10 місяців тому

    I like that the solution does not need any trigonometry, because it makes use of the properties of the special 30-60-90 Triangle!

  • @mauriceravensberg4743
    @mauriceravensberg4743 10 місяців тому

    I found it easier to draw a line from O to meet line A-C perpendicularly. The length of this line segment is the "height" of the isosceles triangle A-O-C. This length is 8 * sin (15º). The "base" of this triangle is length A - C which is 2 * 8 * cos (15º). This makes the surface of this triangle 8 * sin (15º) * 8 * cos (15º) = 16. The area of circle segment AOC is 80/3 * π. The surface area thus becomes 80/3 π - 16.

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks ❤️

  • @murdock5537
    @murdock5537 10 місяців тому

    Very nice, many thanks, Sir!
    φ = 30°; AO = BO = CO = r = 8 → CAB = φ/2 → COB = φ → 2π(30/360) = 16π/3
    ∆ AOC → COB = φ → AOC = 6φ - φ = 5φ → sin⁡(φ) = sin⁡(6φ - φ) = sin⁡(5φ) = 1/2 → (1/2)sin⁡(5φ)64 = 16 →
    purple shaded area = 32π - (16π/3 + 16) = (16/3)(5π - 3)

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks ❤️

  • @markscher1968
    @markscher1968 10 місяців тому +3

    Why not just subtract 15/360 of the area of a circle of radius 16 from the area of a semicircle of radius 8?

    • @ybodoN
      @ybodoN 10 місяців тому

      Because ABC is not a circular sector (the center of the circular arc BC is O, not A)

    • @markscher1968
      @markscher1968 10 місяців тому +1

      @@ybodoN
      I think you are mistaken. None of the calculations by the professor would be valid if it were not as I posit. Certainly AB would not be a diameter of a semicircle and AO would not the radius. Hopefully, the professor will respond.

    • @ybodoN
      @ybodoN 10 місяців тому

      @@markscher1968 the circular sector of center A and radius AB is 15/360 of the area of a circle of radius 16 and its area is about 33.51 square units.
      But AC is √(16² − 4²) = √240 ≈ 15.49 ≠ 16. In fact, the area of ABC (made of a circular sector and an isosceles triangle) is about 32.76 square units.

    • @markscher1968
      @markscher1968 10 місяців тому

      I understand and agree. The arc BC is from a circle of radius 8. It can’t simultaneously be the arc from a circle of radius 16. Excellent point and thanks for your insight.

    • @michaelmulligan502
      @michaelmulligan502 7 місяців тому

      ​@@markscher1968 I went down the same path. Special thanks to @yboNob and ​ @markscher1968

  • @hatelife3503
    @hatelife3503 9 місяців тому

    This problem can be a lot easier -
    find the area of the semicircle with the 8 units radius it will be
    1/2 pi R^2 where the r is 8 which we got by 16/2
    thus becoming 100.5714286 - (i)
    after then find the area of sector abc where theta is 15 and radius is r = 16 with the circle centre O
    it becomes -
    15/360 pi r^2 thus it becomes
    33.52380952 -(ii)
    now subtracting (ii) from (i)
    we get
    100.5714286 - 33.52380952 = 67.04761908
    around the same answer
    though of course correct me if I am wrong.

  • @marioalb9726
    @marioalb9726 10 місяців тому +1

    Area of semicircle:
    A = ½πR² = ½π8²
    A = 100,53 cm²
    Area of isosceles triangle:
    A = ½b.h
    A = ½ 16 cos15°. 8 sin15°
    A = 16 cm²
    Area of angular sector:
    A = ½αR²
    A = ½ 30° (π/180°). 8²
    A = 16,775 cm²
    Purple area:
    A = A₁ -A₂ - A₃
    A = 100,53 - 16 - 16,775
    A = 67,756 cm² ( Solved √ )

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @maxforsberg8852
    @maxforsberg8852 10 місяців тому +1

    Well done. My solution was very similar. I just calculated the 30 degree angle using the central angle theorem and then got the 150 degree angle from the straight angle property. Also I calculated the area of the isosceles triangle using the area formula with sin(150) = sin(180 -30) = sin(30) = 0.5.

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 місяців тому +1

    Ap=1/2π8^2-(1/12π8^2+1/2*8*8sin150)=80/3π-16

    • @PreMath
      @PreMath  10 місяців тому +1

      Bravo!
      Thanks ❤️

  • @DB-lg5sq
    @DB-lg5sq 10 місяців тому

    شكرا لكم
    مساحة نصف الدائرة ذات المركز O والشعاع r هي a
    مساحة القطاع الزاوي BOC هوb
    X=a-b
    =80pi/3 -16

  • @MultiYesindeed
    @MultiYesindeed 10 місяців тому +2

    😁I got it (for once). Thanks.

    • @PreMath
      @PreMath  10 місяців тому

      Awesome!
      Thanks ❤️

  • @mathbynisharsir5586
    @mathbynisharsir5586 10 місяців тому +2

    Awesome video sir ❤❤❤❤❤

    • @PreMath
      @PreMath  10 місяців тому

      Thanks dear ❤

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 місяців тому

    We know that sin(15°) = (sqrt(6) _ sqrt(2)) /4, and cos(15°) = (sqrt(6) + sqrt(2)) / 4.
    So, if H is the orthogonal projection of O on (AC), we have OH = OA. sin(15°) = 2. (sqrt(6) - sqrt (2)) and AH = OA. cos(15°) = 2. (sqrt(6) + sqrt(2)).
    The area of triangle AOH is (1/2).OH.OA = (1/2).2.2. (6-2) = 8, and the area of triangle AOC is the double, so it is 16.
    The area of sector BOC is (30/360). Pi. (8)^2 = 16 Pi /3 (as angle BOC is 30°, the double of angle BAC in the circle)
    The area of the bog semi circle is (1/2). Pi. 8^2 = 32 Pi
    Finally the unknown area is 32 Pi - 16 (Pi/3) - 16 = 80 (Pi /3) - 16.

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

    • @marcgriselhubert3915
      @marcgriselhubert3915 10 місяців тому

      @@PreMath I now realize that it was not necessary to know the values of sin(15°) and cos(15°) as in the area of triangle AOH we multiply these two values, the area of the triangle AOH is: (1/2). OH.AH = (1/2). (1/2). (OA.sin(15°)). (OA.cos(15°)) = (1/2). (OA^2). ((1/2).sin(30°)) =
      (1/2).64. (1/4) = 8 (using the formula giving sin(2x))

  • @MrKwabenaadu
    @MrKwabenaadu 10 місяців тому +1

    i found the area of the semi circle and deduct the area of the sector OBC and area of triangle AOC

    • @gulshanjoshi7682
      @gulshanjoshi7682 10 місяців тому +1

      Semi circle area - sector BOC = Sector AOC. So it is no different from what the Prof did.

  • @nunoalexandre6408
    @nunoalexandre6408 10 місяців тому +2

    Love it!!!!!!!!!!!!!

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤🌹

  • @wackojacko3962
    @wackojacko3962 10 місяців тому

    I like your way too, especially finding the height of Triangle AOC, and Area of Sector AOC. 🙂

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @JSSTyger
    @JSSTyger 10 місяців тому

    My answer is A = 16(5π/3-1) = 67.78. The critical part is to realize that angle COB is double that of angle CAB. After that, you find the areas of sector COB and triangle CAO. The purple area is found by subtracting the sector and triangle from the semicircle.

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @gombotube7405
    @gombotube7405 10 місяців тому

    I could not get how you did the area of Triangle AOC. Triangle AOC is an isosceles triangle with base AC and the other two sides of 8 each. The base AC = 2 (8 x cos(15)) i.e 16 x Cos (15). The height is 8 x Sin(15). The area of Triangle AOC is therefore 1/2 x (16 x cos (15) x 8 x Sin (15)) i.e 64 x Cos(15)Sin(15) . From trigonometric identity this will be 64 x 1/2 x sin(30) = 16.

    • @johnjones8580
      @johnjones8580 10 місяців тому

      He declared AO to be the base and determined the height from CD.

  • @zipponvr7043
    @zipponvr7043 10 місяців тому

    it can be solved easier
    sin150 = sin30 = 0.5, so [AOC] = 1/2*8*8*0.5 = 16
    Purple S = 8*8*n*150/360 - 16

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 4 місяці тому

    There is an abbreviation: After drawing the isosceles triangle, we have 150 degrees angle. Calculate now the area of the sector and subtract isosceles triangle. Finished.

  • @skillet7805
    @skillet7805 10 місяців тому

    Whoa yall made that complicated
    The area of ABC as a sector? I made a mistake
    But as a triangle ABCarea is 32
    Area of purple is 68 which I believe is close enough (opposite = 4.28) I used 4 just to be quick so the discrepancy

  • @wackojacko3962
    @wackojacko3962 10 місяців тому

    I'm I'm thinkin using SAS Theorem and Area of Sector Formula, then Area of semi circle - ( area of isosceles + area of sector COB ). 🙂

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @jarikosonen4079
    @jarikosonen4079 10 місяців тому +1

    1/2*8*8*sin(150°)...

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @mibsaamahmed
    @mibsaamahmed 10 місяців тому

    Can anyone explain, can this method work?:
    Area of the semicircle- the area of the sector which gives about 67.02 units^2

    • @ybodoN
      @ybodoN 10 місяців тому

      ABC is not a circular sector (the center of the circular arc BC is O, not A)

  • @misterenter-iz7rz
    @misterenter-iz7rz 10 місяців тому

    Comparing the previous puzzles, it is too easy. Let us to relax? The answer is 1/2 8^2 pi- 1/12 8^2 pi-8 cos 15 8 sin 15=80/3 pi - 16= 67.7758 approximately.😊

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @Oskar5707
    @Oskar5707 10 місяців тому

    isn't the area simply the area of half the circle with diameter 16 (radius 8) - the area of a 15° circular segment of a circle with radius 16? I got the same result, why did we have to solve it the long way?