Can you find the radius of the inscribed circle? | (Heron's Formula) |

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 47

  • @HarHarMahadev-931
    @HarHarMahadev-931 7 місяців тому +9

    Nice sir
    Plss pin

    • @PreMath
      @PreMath  7 місяців тому +1

      Done 😀

    • @PreMath
      @PreMath  7 місяців тому +1

      😀

  • @ybodoN
    @ybodoN 7 місяців тому +4

    The inradius _r_ of the incircle in a triangle with sides of length _a, b, c_ is given by the formula
    *_r = √[(s − a) (s − b) (s − c) / s]_* where *_s = ½ (a + b + c)_* is the semiperimeter
    This follows from Heron's formula. In our case, _r_ = ⅙ √(231) units. Thank you PreMath! 🙏

    • @PreMath
      @PreMath  7 місяців тому +1

      Excellent!
      You are very welcome!
      Thanks for sharing ❤️

  • @Abby-hi4sf
    @Abby-hi4sf 7 місяців тому +1

    Great one! You are teaching a proof theory easily! Amazing teaching method! Thank you!

  • @robertlynch7520
    @robertlynch7520 7 місяців тому +2

    There's a VERY different alternative way to solve this using trigonometry. Basically, (using any orientation, but where one side is horizontal) the line functions of the half-angles of the two base angles intersect at some 𝒙. The height of the intersecting lines is the radius.
    So what's the slope of a θ/2 line?
    Well, it turns out (spectacular FAIL) that several online "trigonometry identities" references got this wrong. Doing it by hand from
    [1.1]  tan 2θ = 2 tan θ / (1 - tan² θ) … can be re-written as the half-angle formula
    [1.2]  tan θ = 2 tan θ/2 / (1 - tan² θ/2) … then rearranged to
    [1.3]  tan θ/2 = (-1 + √(1 + tan² θ)) / tan θ
    From some basic geometry of finding a height of an arbitrary triangle we get
    [2.1]  𝒒 = ( 𝒂² - 𝒃² + 𝒄² ) ÷ 2𝒄 … q is the distance 'in from the left' to find height
    [2.2]  𝒉 = √( 𝒂² - 𝒒² ) ... is height
    Where [𝒒] is the distance from (0, 0) along the horizontal axis where the [𝒉] height intersects the peak.
    This is NOT yet a solution.
    The tangent is [𝒉 / 𝒒]. So, that plugs into [1.3] readily enough to give the half-angle tangent.
    Good enough. This results in a 'half angle line'. Do the same thing for the right side, and you get the 'other half angle line' function. Cross them mathematically, and you get the intersection point; the height then is the mutual radius of the circle that fits inside the triangle.
    NOTE. If you do this … its good to test that your math is right by changing the lengths of the sides 8-9-10, 10-8-9 and so on. If you didn't make mistakes in the algebra or math, the SAME radius pops out at the end for all combinations.
    Here's the PERL solution, using this technique: (Note that I did NOT use the tan() function directly!)
    ________________________________________
    !/usr/bin/perl; # on a MAC;
    my $a = 8;
    my $b = 10;
    my ¢ = 9;
    my $q = ($a••2 - $b••2 + ¢••2 ) / (2 × ¢);
    my $h = √( $a••2 - $q••2 );
    my $eta = $q••2 / $h • (-1 + √(1 + ($h/$q)••2));
    my $del = (¢ - $q)••2 / $h • (-1 + √(1 + ($h / (¢ - $q) )••2 ) );
    sub dx { my $x = shift; return $del • (¢ - $x) / (¢ - $q ); }
    sub ex { my $x = shift; return $x • $eta/$q; }
    sub fx { my $x = shift; return ($h • $x) / ( $q); }
    sub gx { my $x = shift; return $h • (¢ - $x) / (¢ - $q); }
    my $dx = 0.1; # an iterative way to find 'where the lines cross'.
    my $x; # its not human-fast, but computer do it in
    my $y; # very short time. Thousandths of a second;
    for( $x = 0; $x < ¢; $x += $dx )
    {
    ¥ = ex( $x );
    my $yy = dx( $x );
    next if $yy > $y;
    $x -= $dx;
    $dx /= 2.718281828; # can be anything between 2 and 3
    last if $dx < 1e-11;
    }
    --------- OUTPUT ---------------------------------------------------------------------
    q = 2.5
    h = 7.5993
    eta = 1.8094
    delta = 2.9937
    x at crossover dx() ex() = 3.5 NOTE … not 'q'! Sweet…
    y at crossover dx() ex() = 2.5331 This is the RADIUS of the in-circle.
    And lookee there ... same answer as PreMath!!!

    • @PreMath
      @PreMath  7 місяців тому

      Thanks for putting heart and soul❤️
      You are awesome. Keep smiling👍

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 7 місяців тому +2

    1) H = Sqrt [13,5*(13,5-10)*(13,5-9)*(13,5-8))] ; H = Sqrt(1.169,4375) Square Units
    2) H ~ 34.19704 Square Units
    3) 8*R + 9*R + 10*R = 2 * 34.19704 ; 27*R = 68,35 ; R = 68,35/27 ; R ~ 2,533 Linear Units
    4) My Best Answer is : The Radius is Approx. Equal to 2,533 Linear Units.

    • @PreMath
      @PreMath  7 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 7 місяців тому +3

    triangle area=√s(s-a)(s-b)(s-c)
    s=(a+b+c)/2=(8+9+10)/2=13.5
    Triangle area=√13.5(13.5-8)(13.5-9)(13.5-10)=9√231/4 square units
    1/2(r)(8+9+10)=9√231/4
    27r=9√231/2
    3r=√231/2
    so r=√231/6 =2.53 units. ❤❤❤ Thanks sir.

    • @PreMath
      @PreMath  7 місяців тому +1

      Great job
      You are very welcome!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 7 місяців тому +3

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    When the area A and the perimeter P of the triangle are known, the radius R of the inscribed circle can be calculated as follows:
    A = (1/2)*P*R ⇒ R = 2*A/P
    The perimeter P and the area A can be obtained from the given side lengths:
    P = a + b + c = 8 + 9 + 10 = 27
    A = √[s*(s − a)*(s − b)*(s − c)] with s = (a + b + c)/2 = P/2
    A
    = √[(27/2)*(27/2 − 8)*(27/2 − 9)*(27/2 − 10)]
    = √[(27/2)*(27/2 − 16/2)*(27/2 − 18/2)*(27/2 − 20/2)]
    = √[(27/2)*(11/2)*(9/2)*(7/2)]
    = (9/4)√(3*11*7)
    = (9/4)√231
    Now we are able to calculate the radius:
    R = 2*A/P = 2*(9/4)√231/27 = √231/6 ≈ 2.53

    • @PreMath
      @PreMath  7 місяців тому

      Excellent!
      Thanks for sharing ❤️

  • @uwelinzbauer3973
    @uwelinzbauer3973 7 місяців тому

    Hello!
    I solved the question using trigonometry:
    c²=a²+b²-2ab cos(gamma) and
    a sin(beta)=b sin(alpha)
    Btw, which is the proper name:
    Rule of cosine, law, theorem, sentence, formula,...? -
    I can't remember learning Herons formula at school, either the teacher didn't tell it or perhaps I was ill that time.
    But it is a really interesting and useful method 👍
    Thanks a lot for the interesting video, greetings and best wishes!

  • @misterenter-iz7rz
    @misterenter-iz7rz 7 місяців тому +1

    a+b=8, b+c=9, c+a=10, a+b+c=27/2, a=27/2-9=9/2, b=27/2-10=7/2, c=27/2-8=11/2, half of sum of angles in a triangle is 90, so 1=r^2×4/(7×9+9×11+11×7)=4r^2(1/63+1/77+1/99)=4r^2((11+9+7)/7×9×11)=r^2×108/77×9=r^2×12/77, r^2=77/12, r=sqrt(77/12).😊

    • @PreMath
      @PreMath  7 місяців тому

      Thanks for sharing ❤️

    • @DanielNeedham2500
      @DanielNeedham2500 7 місяців тому

      I've lost you after you said half the angles in a triangle is 90 degrees

    • @misterenter-iz7rz
      @misterenter-iz7rz 7 місяців тому

      @@DanielNeedham2500 three angle bisectors intersecting at the incenter, so there are six angles in that sum of three is just 90°.

  • @ludmilaivanova1603
    @ludmilaivanova1603 7 місяців тому +4

    Sorry, this is not an alternative method because you use the area found earlier. It would be an alternative if you find the hight of a big triangle by using Pyphagorean theorem.

    • @PreMath
      @PreMath  7 місяців тому

      Thanks ❤️

    • @dirklutz2818
      @dirklutz2818 7 місяців тому

      AB=10, so AD=5.85 and DB=4.15 (Pyth.th twice). Height triangle is DC=sqrt(46,7775)=9/20 * sqrt(231) Area triangle= 10/2 * 9/20* sqrt(231) = 9/4*sqrt(231)

  • @zdrastvutye
    @zdrastvutye 7 місяців тому

    the following code does not calculate bisectors of angles, it just
    uses the pythagoras and perpendicular formula ( the line between 2 of the triangle corners must be on the x axis):
    10 print "innenkreis eines dreiecks ohne die winkelhalbierenden":dim x(5,2),y(5,2)
    20 l1=8:l2=9:l3=10:n=l1^2+l2^2+l3^2:if l3>l2+l1 then else 40
    30 print "ungueltige eingabe":end
    40 lh=(l1^2-l2^2+l3^2)/2/l3:h=sqr(l1^2-lh^2):xb=l3:xc=lh:yc=h:xb=l3:yb=0
    50 masx=1200/l3:masy=900/h:if masx0 then 110
    120 xm=(xm1+xm2)/2:gosub 70:if dg1*dg>0 then xm1=xm else xm2=xm
    130 if abs(dg)>1E-10 then 120
    140 x1=l3:y1=0:x2=lh:y2=h:xp=xm:yp=ym:gosub 150:goto 170
    150 dx=x2-x1:dy=y2-y1:zx=dx*(xp-x1):zy=dy*(yp-y1):k=(zx+zy)/(dx^2+dy^2)
    160 dxk=dx*k:dyk=dy*k:xs=x1+dxk:ys=y1+dyk:return
    170 xs2=xs:ys2=ys:x1=0:y1=0:gosub 150:xs3=xs:ys3=ys
    180 x(0,0)=0:y(0,0)=0:x(0,1)=xm:y(0,1)=0:x(0,2)=xm:y(0,2)=ym
    190 x(1,0)=xm:y(1,0)=0:x(1,1)=l3:y(1,1)=0:x(1,2)=xm:y(1,2)=ym
    200 x(2,0)=l3:y(2,0)=0:x(2,1)=xs2:y(2,1)=ys2:x(2,2)=xm:y(2,2)=ym
    210 x(3,0)=xs2:y(3,0)=ys2:x(3,1)=lh:y(3,1)=h:x(3,2)=xm:y(3,2)=ym
    220 x(4,0)=lh:y(4,0)=h:x(4,1)=xs3:y(4,1)=ys3:x(4,2)=xm:y(4,2)=ym
    230 x(5,0)=xs3:y(5,0)=ys3:x(5,1)=0:y(5,1)=0:x(5,2)=xm:y(5,2)=ym
    240 print xm,"%",ym:r=ym:goto 260
    250 xbu=x*mass:ybu=y*mass:return
    260 for a=0 to 5:gcol 8+a:x=x(a,0):y=y(a,0):gosub 250:xba=xbu:yba=ybu
    270 for b=1 to 3:ib=b:if ib=3 then ib=0
    280 x=x(a,ib):y=y(a,ib):gosub 250:xbn=xbu:ybn=ybu:goto 300
    290 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    300 gosub 290:next b:next a:gcol 10:x=xm:y=ym:gosub 250:circle xbu,ybu,r*mass
    310
    innenkreis eines dreiecks ohne die winkelhalbierenden
    4.5% 2.53311403
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @michaelstahl1515
    @michaelstahl1515 7 місяців тому +1

    Thanks for your video. Even you used the formula
    for calculating the radius for the inside circle as I did.

    • @PreMath
      @PreMath  7 місяців тому

      Great!
      You are very welcome!
      Thanks ❤️

  • @MrPaulc222
    @MrPaulc222 7 місяців тому

    I haven't watched the video yet, but I might split the large triangle into three smaller triangles that each have r as the height. This gives the large triangle's area as 5r + 4r + 4.5r = 13.5r.
    I would then calculate the area with Heron's Formula (can't recall it to mind but can look it up). I would then divide the area from HF by 13.5 to find r. Perhaps I would double the area and divide by 27, but it depends what number HF gives me.
    I see my way approximates your first method. Your second method looks much cleaner though.

  • @CloudBushyMath
    @CloudBushyMath 7 місяців тому +1

    Great , Mind work-out

    • @PreMath
      @PreMath  7 місяців тому

      Yes indeed!
      Thanks ❤️

  • @murdock5537
    @murdock5537 7 місяців тому +1

    Nice! φ = 30°; ∆ ABC → AB = 10 = AE + BE = k + (10 - k); BC = 9 = BF + CF = 10 - k + CF
    AC = 8 = AD + CD = k + 8 - k → CD = CF = 8 - k → BC = 9 = 8 - k + 10 - k → k = 9/2 → 10 - k = BE = 11/2
    DO = EO = FO = r = ? → sin⁡(OEB) = sin⁡(ODA) = sin⁡(OFC) = sin⁡(3φ) = 1
    EBO = OBF = δ; DAO = OAE = α; ∆ ABC → 64 = 100 + 81 - 2(10)(9)cos⁡(2δ) → cos⁡(2δ) = 13/20 →
    sin⁡(δ) = √((1/2)(1 - cos⁡(2δ))) = √70/20 → cos⁡(δ) =√(1 - sin^2(δ)) = √1320/40 →
    tan⁡(δ) = sin⁡(δ)/cos⁡(δ) = √231/33 = 2r/11 → r = √231/6

    • @PreMath
      @PreMath  7 місяців тому +1

      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 7 місяців тому +2

    Thank you!

    • @PreMath
      @PreMath  7 місяців тому

      You are very welcome!🌹
      Thanks ❤️

  • @laxmikatta1774
    @laxmikatta1774 7 місяців тому +1

    Moral of the video :-
    whenever circle is inscribed in a triangle it's
    AREA OF Δ
    RADIUS= --------
    S
    where s stands for
    semiperimeter😊❤😊

    • @PreMath
      @PreMath  7 місяців тому

      True!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 7 місяців тому +1

    √231/6≈2,53

  • @MrPoornakumar
    @MrPoornakumar 7 місяців тому

    Today I learnt another triangle formula.

  • @זאבגלברד
    @זאבגלברד 7 місяців тому

    Instead of Heron it is simpler to say that we find the intersection of two circles. One is centered at 0,0 redius 9 . The other is centered at 10,0 radius 8

    • @PreMath
      @PreMath  7 місяців тому

      Thanks for sharing ❤️

    • @זאבגלברד
      @זאבגלברד 7 місяців тому

      @@PreMathDo you agree that there is no need for Heron ? A simple set of equations solve it. Giving 3 sides of a triangle, this is the best way, I think. Thank you for many excellent videos.

    • @PreMath
      @PreMath  7 місяців тому

      @@זאבגלברד
      Many approaches are possible to find the solution to this problem!
      Thanks for the feedback 🌹

  • @wackojacko3962
    @wackojacko3962 7 місяців тому +2

    @ 10:40 this morning I am Cuckoo for Cocoa Puffs. 🙂

    • @PreMath
      @PreMath  7 місяців тому

      😀
      Thanks for sharing ❤️

  • @sambhubaitharu2250
    @sambhubaitharu2250 7 місяців тому

    Class 9th exampler question

  • @misterenter-iz7rz
    @misterenter-iz7rz 7 місяців тому

    No alternatives offered by premath? 😮
    I just offer one alternative solutions,😅 I consider the sum of angles of three angle bisectors, that is just 90. 😊

    • @PreMath
      @PreMath  7 місяців тому +1

      Thanks ❤️

  • @trazom446
    @trazom446 2 місяці тому

    Permettez-moi de vous dire que vous conduisez assaz mal vos calculs. On ne supprime pas un dénominateur alors qu'on doit le refaire apparaitre quelques lignes plus loin. Un prof de math à la retraite.