5 INTERNAL ENERGY CALCULATION | THERMODYNAMICS | IIT ADVANCED | JEE MAIN | CHEMISTRY CLASS 11

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 76

  • @sarthakpriyadarshi3670
    @sarthakpriyadarshi3670 4 роки тому +28

    The way he teaches makes me smile .. and by seeing him smile it goes much wider ..
    Thanx sir for the efforts u making for the future generations 🙏🙏🙏❤️❤️❤️❤️❤️

  • @llight4619
    @llight4619 Рік тому +171

    Lect 5 done....everytime someone likes this comment..i will rewatch it

  • @ArRt1719
    @ArRt1719 2 роки тому +3

    2:13 4:30 6:43 8:09 9:31 10:34 12:05 15:24

  • @schrodingersmiley6407
    @schrodingersmiley6407 2 роки тому +2

    No one has explained like you in whole youtube.

  • @integration_IIT_ISM
    @integration_IIT_ISM 2 роки тому +15

    It was a mind blowing EXPLANATION...💥💥

  • @keshav409
    @keshav409 4 роки тому +25

    Sir this vedio and vedios added after to this in thermodynamics aren't available in 240p pls 😭 pls make to them available in240p.
    I have net issues in my area.🙏

  • @sohamunhale5606
    @sohamunhale5606 2 місяці тому +2

    sir very nice lecture and explaination

  • @kunals4509
    @kunals4509 4 роки тому +17

    Sir what about Real Gas undergoing isobaric process?

    • @nownow1025
      @nownow1025 3 роки тому +8

      U=f(T,P) for real gas
      dU={delU/delT}dT at const. P + {delU/delT}dT at const. T
      phela term=0 since const. Pressure
      dU={delU/delT}dT×dP at const. Temp.

    • @archanagaikwad3063
      @archanagaikwad3063 3 роки тому +2

      @@nownow1025 But why dp at last step

    • @schrodingersmiley6407
      @schrodingersmiley6407 2 роки тому

      @@archanagaikwad3063 he has written by mistake it should not be there

    • @deadpool20065
      @deadpool20065 Рік тому

      @@nownow1025 absolutely right

  • @imadiraj
    @imadiraj 4 роки тому +5

    Love your lecture sir.
    ❤️❤️❤️❤️❤️❤️❤️❤️

  • @PriyanshuKumar-dv5wl
    @PriyanshuKumar-dv5wl 10 місяців тому +1

    In case 1
    What if the system is doing some work(since it may not be isochoric) should we not consider work done by ideal gas?

    • @comptech5240
      @comptech5240 2 місяці тому

      then ig u will use formula Q=U+W. Thus, as W is there, you will simply substract it from Q and get U.

    • @comptech5240
      @comptech5240 2 місяці тому +1

      also ig as we are consider dT in the equation, all work done is to be considered by external energy supplied, no internal work done.

    • @apex_blade
      @apex_blade Місяць тому

      for an ideal gas U = f(t) since U = K.E and P.E = 0. hence work done doesn't matter

  • @azhar_writes_79
    @azhar_writes_79 Рік тому +4

    Like that you are awesome 😎😎😎😎😎

  • @alphaiitd1
    @alphaiitd1 3 роки тому +3

    Thanks sir

  • @aadiparakh7225
    @aadiparakh7225 Рік тому +6

    watching for midsems at bits used to watch for jee :)

  • @edu_in_iitg
    @edu_in_iitg 3 місяці тому

    Thank you sir

  • @PavanVG-2506
    @PavanVG-2506 2 місяці тому

    Sir when will you provide lectures in english
    If u provide it people from south get benefitted.....

  • @vikram_singh005
    @vikram_singh005 Рік тому +5

    Why too much ads 😖😖

  • @lumapradhan8393
    @lumapradhan8393 4 роки тому +2

    Very nice sir

  • @KartikSharma-gb4uw
    @KartikSharma-gb4uw Рік тому

    Majja aa gya sir bhot acchi explanation thi ❤

  • @user-oh7be6vb5m
    @user-oh7be6vb5m 4 роки тому +8

    sir how U is function of pressure please tell

    • @jinnieslostalpaca6382
      @jinnieslostalpaca6382 2 роки тому

      U (potential energy) depends on K.E. and P.E. which in turn depends on temperature(KE) and Volume as well as temperature (PE).....and Since volume is inversely proportional to pressure..... the dependence on Volume can also be considered dependence on Pressure

    • @infinitevoid5141
      @infinitevoid5141 2 роки тому

      Ideal gas eqn

  • @sonalkumari3269
    @sonalkumari3269 Рік тому

    Should we convert 20 degree celcius to 293K

  • @SSEpsilon
    @SSEpsilon 2 роки тому

    Thank you sir

  • @abhishekthakur3551
    @abhishekthakur3551 Місяць тому

    Sir there are many ads between your lectures which disturbs the flow and especially there are ads of other coachings

    • @MohitTyagi
      @MohitTyagi  Місяць тому +5

      Dear student, if you are getting distracted by ads, you can join UA-cam Premium membership or download the lecture videos to avoid distractions from ads.

  • @mujhe_kya_mai_toh_tamatar_hu

    😊

  • @journeyofc6200
    @journeyofc6200 Рік тому +27

    Used to watch this for jee, now watching it for mid sem at NIT JSR😂

    • @Imyoursk11ddo
      @Imyoursk11ddo 2 місяці тому

      That's a motivation for me❤

    • @exteremethunder5211
      @exteremethunder5211 2 місяці тому

      😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂

  • @ramanujan4068
    @ramanujan4068 Рік тому +1

    10:06
    U = f(ke)
    KE = 3 K T / 2 = 3 K (PV) / 2nR
    => ke = f(PV) = f (t) = f(p,v) = f(p,v,t)
    How did you say so.
    If T changes, then (p x v) is bound to change.
    Anybody, please clarify my philosphy if I'm wrong somewhere.
    How did you say that

    • @study-y9w
      @study-y9w Місяць тому

      The reasoning you're using involves the relationships between kinetic energy (KE), temperature (T), pressure (P), and volume (V), but there seems to be some confusion about how these quantities depend on each other in thermodynamic systems. Let’s break this down step by step and clarify where there might be confusion.
      ### 1. **Kinetic Energy and Temperature (KE = 3kT/2)**
      You’ve correctly mentioned that the average **kinetic energy** (KE) of a gas molecule in an ideal gas is proportional to the **temperature** (T):
      \[
      KE = \frac{3}{2} k T
      \]
      where:
      - \( KE \) is the average kinetic energy per particle.
      - \( k \) is the Boltzmann constant.
      - \( T \) is the absolute temperature.
      This equation tells us that as the temperature \( T \) increases, the average kinetic energy of the gas molecules also increases.
      ### 2. **Relationship Between Temperature, Pressure, and Volume**
      You then mention another equation:
      \[
      KE = \frac{3 k PV}{2nR}
      \]
      This expression comes from the **ideal gas law**:
      \[
      PV = nRT
      \]
      where:
      - \( P \) is the pressure.
      - \( V \) is the volume.
      - \( n \) is the number of moles of gas.
      - \( R \) is the ideal gas constant.
      When we substitute \( T = \frac{PV}{nR} \) into the kinetic energy expression \( KE = \frac{3}{2} kT \), you get:
      \[
      KE = \frac{3 k (PV)}{2nR}
      \]
      This simply shows that the kinetic energy can also be expressed in terms of pressure (P), volume (V), and temperature (T) via the ideal gas law.
      ### 3. **Dependence of KE on P, V, and T**
      You wrote:
      \[
      KE = f(PV) = f(T) = f(P, V) = f(P, V, T)
      \]
      This expression is **not wrong** but can be misleading without further clarification. The kinetic energy is directly related to the **temperature** (T), and through the ideal gas law, it can also be written in terms of \( P \) and \( V \).
      However, in an ideal gas system, **if temperature (T) changes**, either \( P \) or \( V \) must change, or both, to satisfy the ideal gas law \( PV = nRT \). Therefore, \( KE \) is primarily a function of **T**, but since \( T \), \( P \), and \( V \) are related, any change in one will affect the others.
      ### 4. **Your Question about \( PV \) and T**
      You asked:
      > If \( T \) changes, then \( P \times V \) is bound to change.
      Yes, you are absolutely correct! According to the ideal gas law \( PV = nRT \), if the temperature \( T \) changes, either \( P \), \( V \), or both must change to maintain the relationship. Therefore, if \( T \) increases or decreases, the product \( P \times V \) must also adjust accordingly.
      ### Summary of Clarification:
      - The average kinetic energy \( KE \) of gas molecules is **directly proportional to temperature**.
      - The **ideal gas law** relates pressure (P), volume (V), and temperature (T) as \( PV = nRT \).
      - If **T changes**, then either \( P \) or \( V \), or both, will change to maintain the ideal gas law relationship.
      - Therefore, \( KE \) can be expressed as a function of \( T \) or indirectly as a function of \( P \times V \).
      Your philosophy about the relationship between these quantities is on point. If temperature changes, \( P \times V \) must change too-this is a direct consequence of the ideal gas law.

  • @jankiarora
    @jankiarora Рік тому

    At 10:34 , for an ideal gas how is dU is zero?

    • @phndkratv7498
      @phndkratv7498 Рік тому +1

      Gaseous state nhi padha kya

    • @JaswanthSai_25
      @JaswanthSai_25 Рік тому

      dU isnt zero for ideal gas. partial derivative of dU/dV is zero as the internal energy U = f(T) [Internal energy is function only in terms of T, so derivative with respect to V must be zero]

  • @amitsingh2782
    @amitsingh2782 3 роки тому

    ❤️❤️❤️

  • @vikram_singh005
    @vikram_singh005 Рік тому +1

    🛐🛐🛐

  • @frostgamerz2222
    @frostgamerz2222 Місяць тому

    #askCompetishun sir apna kha PE=f(T,v) where v is displacement bw molecules but how if volume is 0 then v is also are they both same

  • @bhaskarraj378
    @bhaskarraj378 2 роки тому

    Thank you sir

  • @namanarora2005
    @namanarora2005 Рік тому

    Thank you sir