Owls Math
Owls Math
  • 630
  • 449 266
So much TRIG!!!
MY OTHER CHANNEL:
www.youtube.com/@owl3math
MY OTHER OTHER CHANNEL:
ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html
Website:
owlsmath.neocities.org
#integrationtechniques
#integrals
#mathcompetition
#mitintegrationbee
Переглядів: 127

Відео

Can we have the Lambert W inside the integral?!?
Переглядів 74916 годин тому
For more info on the Lambert W function: Introduction Video: ua-cam.com/video/pUhA_ETbWj8/v-deo.html ua-cam.com/video/16g3D0WmgUU/v-deo.htmlsi=bBwrXIpN66PREr_G OM Playlist: ua-cam.com/play/PL3V5r2TTyHb64zSf_skaH-_G_NpCIGuKJ.html OSM playlist: ua-cam.com/play/PLZza5ZCDgQWy2DVPhadZFXPBlV80JD6Y1.html&si=XzQbjIlGjb-MGUJy Many practice problems: owlsmath.neocities.org/Lambert W Challenge/lambert.htm...
Weird problem!
Переглядів 1,5 тис.21 годину тому
MY OTHER CHANNEL: www.youtube.com/@owl3math MY OTHER OTHER CHANNEL: ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Website: owlsmath.neocities.org #integrationtechniques #integrals #mathcompetition #mitintegrationbee
Just use the "Owl Transform" on it!
Переглядів 560День тому
Thanks to adandap for calling it "Owl Transform" when you multiply in secant sqared over secant squared. The "other video" where I use the substitution suggested and also deriving the formula / Mellin Transform: ua-cam.com/video/SF0a9uBgbpI/v-deo.htmlsi=Nj27r5WqtafodEM9 MY OTHER CHANNEL: www.youtube.com/@owl3math MY OTHER OTHER CHANNEL: ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Website: o...
I tried a series from SyberMath
Переглядів 341День тому
Here's the video from SyberMath (on channel aplusbi) CHECK IT OUT!: ua-cam.com/video/AR60jRmUP4U/v-deo.htmlsi=QWG65Nj4y1R605Jr I also did a similar problem with the terms squared in the denominator: ua-cam.com/video/Hl6_j_vAggM/v-deo.html Series Cheat Sheet: owlsmath.neocities.org/Series Cheat Sheet/Series cheat sheet Check out my other channel: www.youtube.com/@owl3math Check out my other chan...
MIT 2023 Quarterfinals #4-3
Переглядів 1,7 тис.День тому
MY OTHER CHANNEL: www.youtube.com/@owl3math MY OTHER OTHER CHANNEL: ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Website: owlsmath.neocities.org #integrationtechniques #integrals #mathcompetition #mitintegrationbee
Can you guess the answer from the thumbnail???
Переглядів 1,8 тис.День тому
Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Some practice problems for you: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #integrationtechniques #integrals
Just use wishful thinking on it ;)
Переглядів 52414 днів тому
Related practice problems: owlsmath.neocities.org/Cramer's Rule Integral/cramersRule MY OTHER CHANNEL: www.youtube.com/@owl3math MY OTHER OTHER CHANNEL: ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Website: owlsmath.neocities.org #integrationtechniques #integrals #mathcompetition #mitintegrationbee
It's tricky when the exponents aren't so nice
Переглядів 79414 днів тому
Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Some practice problems for you: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #integrationtechniques #integrals
it's ALWAYS Feynman time
Переглядів 48914 днів тому
Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Some practice problems for you: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #integrationtechniques #integrals
I think I may have exhausted all methods
Переглядів 1,1 тис.21 день тому
Series Cheat Sheet: owlsmath.neocities.org/Series Cheat Sheet/Series cheat sheet Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Website: owlsmath.neocities.org #series #integrals
Nice general formula!
Переглядів 27921 день тому
Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Some practice problems for you: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #integrationtechniques #integrals
Every integral I see has a sine in it
Переглядів 98428 днів тому
Laplace Transforms playlist: ua-cam.com/play/PLOvxeHw2nLaySIKdV-QTjiGHHkOx0M_2-.html Practice problems: owlsmath.neocities.org/Laplace 101/laplace owlsmath.neocities.org/Inverse Laplace 101/laplace owlsmath.neocities.org/Laplace Cheat Sheet/laplace cheat sheet Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_g...
I got a nice "Alternative Method" from the comments
Переглядів 1,3 тис.Місяць тому
Previous video with the other method: ua-cam.com/video/K_B64XhGPrg/v-deo.html Video finding the value of Eta(2): ua-cam.com/video/qLOTNE_nt9I/v-deo.html Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Some practice problems for you: owlsmath.neocities.org/integrals.html Website: owlsmath.neocit...
Easy way vs hard way
Переглядів 623Місяць тому
Digamma function playlist: ua-cam.com/play/PLOvxeHw2nLayOeLM8OZHtfhMfuDjelWeQ.html Series Cheat Sheet: owlsmath.neocities.org/Series Cheat Sheet/Series cheat sheet Check out my other channel: www.youtube.com/@owl3math Check out my other channel OWLS SCHOOL OF MATH! ua-cam.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Website: owlsmath.neocities.org #series #seriesconvergence #digammafunction
Apery's constant gets involved
Переглядів 314Місяць тому
Apery's constant gets involved
integral Twins!
Переглядів 637Місяць тому
integral Twins!
It's like a mix of 3 previous videos
Переглядів 434Місяць тому
It's like a mix of 3 previous videos
Use the Lambert W!!! Even if you don't need it
Переглядів 2,1 тис.Місяць тому
Use the Lambert W!!! Even if you don't need it
MIT 2022 Finals #2
Переглядів 506Місяць тому
MIT 2022 Finals #2
I can't keep track of all the integrals!
Переглядів 1,3 тис.Місяць тому
I can't keep track of all the integrals!
One formula solves millions of integrals!
Переглядів 1,5 тис.Місяць тому
One formula solves millions of integrals!
Kind of sort of the Gaussian integral???
Переглядів 1,1 тис.Місяць тому
Kind of sort of the Gaussian integral???
Do you know any "alternative methods" for this one?
Переглядів 531Місяць тому
Do you know any "alternative methods" for this one?
Easy Way vs Hard Way
Переглядів 1,2 тис.Місяць тому
Easy Way vs Hard Way
Can I turn this into a Laplace Transform???
Переглядів 336Місяць тому
Can I turn this into a Laplace Transform???
Shortcut!! MIT 2024 Quarterfinals#1-2
Переглядів 474Місяць тому
Shortcut!! MIT 2024 Quarterfinals#1-2
Another NICE solution using 2024
Переглядів 1,7 тис.Місяць тому
Another NICE solution using 2024
If at first you don't succeed try Feynman's trick
Переглядів 7902 місяці тому
If at first you don't succeed try Feynman's trick
This is a MUCH nicer solution than what I was expecting
Переглядів 8532 місяці тому
This is a MUCH nicer solution than what I was expecting

КОМЕНТАРІ

  • @MikeMagTech
    @MikeMagTech 18 годин тому

    Nice job. That was a real trig workout!

    • @owlsmath
      @owlsmath 18 годин тому

      Really was! Maybe the most trig ever 😃

  • @buzzybola
    @buzzybola 21 годину тому

    Awww yeah, luv me sum Trig!

    • @owlsmath
      @owlsmath 18 годин тому

      Nice! 👍😃

  • @reaperskyfall6691
    @reaperskyfall6691 23 години тому

    that is why i always recommend everyone to revise trignometric properties of functions before doing integrals.

    • @owlsmath
      @owlsmath 22 години тому

      So true! Trig & Algebra in many cases are more important than the calculus.

  • @MikeMagTech
    @MikeMagTech 2 дні тому

    That was a very interesting problem. Am I correct in assuming that "regular" college calculus I / II / III would not prepare you to solve a problem like this? In other words, are you using secret techniques that college professors don't want us to know about?

    • @owlsmath
      @owlsmath 2 дні тому

      Exactly! Again the world wide teacher conspiracy is withholding information and hoarding all of the math knowledge. 🤣

    • @buzzybola
      @buzzybola 2 дні тому

      Yep. Universities / colleges are a business out to scam you & you are better off learning on your own in current year.

  • @maxvangulik1988
    @maxvangulik1988 3 дні тому

    ẞ(u,v)=int[0,♾️](x^(u-1)/(x+1)^(u+v))dx x=z^2 dx=2zdz ẞ(u,v)=2•int[0,♾️](z^(2u-1)/(z^2+1)^(u+v))dz I=1/2•ẞ(3/4,5/4)=Ř(3/4)Ř(5/4)/2Ř(2) I=Ř(1/4)Ř(3/4)/8 I=pi/8•csc(pi/4) I=pi/4sqrt(2)

  • @maxvangulik1988
    @maxvangulik1988 3 дні тому

    x=sinh^2(t) dx=sinh(2t) sqrt(x+1)=cosh(t) I=int(sinh(2t)e^-(pi•t))dt I=int(e^(2-pi)t-e^(-2-pi)t)dt I=e^(2-pi)t/(2-pi)+e^-(2+pi)t/(2+pi)+C I=e^-(pi•t)•((2+pi)e^2t+(2-pi)e^-2t)/(4-pi^2)+C I=e^-(pi•t)•(4cosh(2t)+2pi•sinh(2t))/(4-pi^2) cosh(2t)=cosh^2(t)+sinh^2(t)=2x+1 sinh(2t)=2sinh(t)cosh(t)=2sqrt(x)sqrt(x+1) e^-t=cosh(t)-sinh(t)=sqrt(x+1)-sqrt(x) I=(sqrt(x+1)-sqrt(x))^pi•(8x+4+4pi•sqrt(x^2+x))/(4-pi^2)+C

    • @owlsmath
      @owlsmath 3 дні тому

      thanks! Nice method :)

    • @dalek1099
      @dalek1099 2 дні тому

      You missed out the derivative of x=sinh^2(t)=2sinh(t)cosh(t)=sinh(2t)=(e^(2t)-e^(-2t))/2. That's why your answer doesn't look like the video

    • @maxvangulik1988
      @maxvangulik1988 2 дні тому

      @@dalek1099 thx i fixed it and simplified

  • @maxvangulik1988
    @maxvangulik1988 3 дні тому

    I=int[0,pi/2](cbrt(tan(x))/(1+sin(2x)))dx t=tan(x) dx=dt/(1+t^2) sin(2x)=2t/(1+t^2) I=int[0,♾️](cbrt(t)/(1+2t+t^2))dt I=int[0,♾️](t^(1/3)/(1+t)^2)dt ẞ(x,y)=int[0,♾️](p^(x-1)/(1+p)^(x+y))dp I=ẞ(4/3,2/3)=Ř(4/3)Ř(2/3)/Ř(2) Ř(2)=1!=1 Ř(4/3)=1/3•Ř(1/3) I=Ř(1/3)Ř(2/3)/3 Ř(x)Ř(1-x)=pi•csc(pi•x) I=pi/3•csc(pi/3) I=2pi/3sqrt(3)

  • @reaperskyfall6691
    @reaperskyfall6691 3 дні тому

    That one substitution changed whole game

    • @owlsmath
      @owlsmath 3 дні тому

      yep! :) 👍👍👍

  • @holyshit922
    @holyshit922 4 дні тому

    Suppose we want to play with orthogonalization and we define inner product in the form \int_{-1}^{1}p(x)q(x)\cdot \frac{1}{\sqrt{1-x^2}}dx then p(x)q(x) = can be expressed as sum \sum_{k=0}^{m+n}a_{k}x^{k} so we have integral \int_{-1}^{1}\frac{x^{k}}{\sqrt{1-x^2}}dx to calculate Now we can use substitution x = cos(t) to get integral \int_{\pi}^{0}\cos^{k}{t}\cdot\frac{1}{\sqrt{1-cos^{2}{t}}}(-\sin{t})dt =\int_{0}^{\pi}\cos^{k}{t}dt So is we want to orthogonalize basis of polynomials to get Chebyshov polynomials we need to calculate \int_{0}^{\pi}\cos^{k}{t}dt and then we should set a = 0 and b = \pi in your integral And this reduction can be derived by parts using Pythagorean trigonometric identity

    • @owlsmath
      @owlsmath 4 дні тому

      Nice thanks! 👍

  • @LipschitzHutchinson
    @LipschitzHutchinson 4 дні тому

    An alternative method would be to substitute x=sinh^2 u, although it's a bit messier since you need to do some simplifications with arcsinh. Although, now that I think about it, it really is just equivalent to setting x=(u-1/u)^2/4, which is what was done in the problem.

    • @owlsmath
      @owlsmath 4 дні тому

      Makes sense. Thanks 🙏

  • @slavinojunepri7648
    @slavinojunepri7648 4 дні тому

    Fantastic

  • @Dharun-ge2fo
    @Dharun-ge2fo 4 дні тому

    You could have directly differentiated u and then solve for root(x+1) and root (x) by adding and subtracting the equations, u= root(x+1)-root(x) , and (1/u)= root(x+1)+root(x)

  • @blacksnow7106
    @blacksnow7106 4 дні тому

    So if you follow this method and integrate (e^x)(sinx), you would get (e^x)(sinx)(1-1+1-1+1-1+...) - (e^x)(cosx)(1-1+1-1+...) Doing it the normal way you would have (1/2)(e^x)(sinx) - (1/2)(e^x)(cosx) This implied the series (1-1+1-1+1-1+...) is 1/2

  • @dkravitz78
    @dkravitz78 4 дні тому

    Just to simplify a little. Let v be the '+' version of u. uv=1 and v-u=2 sqrt (x) so 4x = v^2-2uv+u^2 = 1/u^2 -2 + u^2 From there 4 dx is easy to see -1/u^3+2u times du I don't know if I'd call that a huge game but it does simplify a little

    • @owlsmath
      @owlsmath 4 дні тому

      Thats nice! Its easier to differentiate that way but I also like that you get to use that relationship between u and v that i mentioned briefly at the beginning of the video.

  • @MikeMagTech
    @MikeMagTech 5 днів тому

    Nice job. It simplified nicely, but getting there was not straightforward.

    • @owlsmath
      @owlsmath 4 дні тому

      Thanks! Yep it’s a tricky substitution in this one. 👍

  • @parinose6163
    @parinose6163 5 днів тому

    @EdwardSileo 8 months ago I have to comment here. This is an excellent video: (1) It explains how inverses work - f(f-1(x)) and f-1(f(x)). (2) It explains the symmetry of inverse functions. (3) It explains the domain issues with the Lambert function (with the correction he mentions below) Thanks. My comment: Today, I saw a video on LF where someone states clearly that LF (W) is NOT A FUNCTION! -despite the name. You can try to arrange things, but it is not a function. Because a function cannot have two values for a given x. Many Thanks

  • @holyshit922
    @holyshit922 6 днів тому

    My solution t^3 = tan(x) substitution then by parts with u = t , dv = 3t^2/(t^3 + 1)^2dt After integration by parts 1/(1+t^3) = 1/2 *1/(1+t^3)+1/2*1/(1+t^3) then in one of the integrals 1/2*1/(1+t^3) use t = 1/u substitution then add both integrals

    • @holyshit922
      @holyshit922 6 днів тому

      In my opinion solution above is the easiest No Beta and Gamma functions and stuff like this

    • @owlsmath
      @owlsmath 5 днів тому

      nice!

  • @suryamgangwal8315
    @suryamgangwal8315 6 днів тому

    if we use 2/3 as x wont the answer be negative?

    • @owlsmath
      @owlsmath 6 днів тому

      No, because sin(2pi/3) = sin(pi/3) = sqrt(3)/2

    • @suryamgangwal8315
      @suryamgangwal8315 6 днів тому

      @@owlsmath yeahhhh, I was things of sin(-x)=-sin(x).

  • @ProCoderIO
    @ProCoderIO 6 днів тому

    If e^x = 1 + x^1/1! + x^2/2! + x^3/3! + ..., then wouldn't... i^1/1! + i^2/2! + i^3/3! + ... = e^i - 1? And if e^ix = cos(x) + i*sin(x), then with x=1, wouldn't e^i - 1 = cos(1)-1 + i*sin(1) = -.45 + 0.84i?

    • @owlsmath
      @owlsmath 6 днів тому

      Hi! Yes your work looks correct to me but the problem doesn't have the factorials in the denominator.

    • @ProCoderIO
      @ProCoderIO 6 днів тому

      @@owlsmath Okay, I KNEW something had to be off! I kept looking at your solution and NOT SEEING what was different!!

    • @owlsmath
      @owlsmath 6 днів тому

      @@ProCoderIO makes sense! I do stuff like that all the time :)

  • @reaperskyfall6691
    @reaperskyfall6691 6 днів тому

    This can be mcqs material

    • @owlsmath
      @owlsmath 6 днів тому

      Sorry what’s mcqs? I’ll try to google it 😆

    • @owlsmath
      @owlsmath 6 днів тому

      Multiple choice question?

  • @slavinojunepri7648
    @slavinojunepri7648 6 днів тому

    Excellent

  • @cablethelarryguy
    @cablethelarryguy 7 днів тому

    I wish you used the first method. I find all these formulae overwhelming. I still love it.

    • @owlsmath
      @owlsmath 6 днів тому

      Good point. Makes sense. The first method is more straightforward and no formulas to remember

  • @actions-speak
    @actions-speak 8 днів тому

    Consider the lengths of the intervals over which the integrand is equal to n. n = 1 is a special case where we integrate from 1/3 to 1. Otherwise the length of the interval is 2n+1/((n+2)(n+1)n(n-1)) and the value of the integral is 2n+1/((n+2)(n+1)(n-1)). Using partial fraction decomposition the value of the integral over each interval is -1/(n+2) + 1/2 1/(n+1) + 1/2 1/(n-1). Take the sum from n = 2 to infinity, then re-index to get the sum from n = 4 of -1/n the sum from n = 3 of 1/2 1/n and the sum from n = 1 of 1/2 1/n. Then all the terms with n >= 4 sum to zero and the remaining terms plus 2/3 sum to 7/4.

  • @MikeMagTech
    @MikeMagTech 8 днів тому

    Very enjoyable! Thank you! Back when I was first learning math I did not care for analysis and assumed complex analysis would be even worse. Boy was I wrong! As it turned out I loved complex analysis, and it has been my favorite branch of math ever since.

    • @owlsmath
      @owlsmath 8 днів тому

      Thanks Mike. It’s a fun one! I haven’t done many complex series on the channels

  • @mikeschieffer2644
    @mikeschieffer2644 9 днів тому

    I thought the interval of convergence for ln(1-x) was -1 < x < 1. Does i fall in this interval so that we can use it in the series?

    • @owlsmath
      @owlsmath 8 днів тому

      Hi Mike. Yes there is a similar rule for convergence on a complex series. You can check that the real part and imaginary part both meet the criteria

  • @StevenTorrey
    @StevenTorrey 9 днів тому

    Can the Lambert Function be solved without a special calculator and how? I see lots of problems solved with the Lambert Function, but it strikes me as a piece of magic when it comes to finding the correct logarithm. What exactly is being multiplied or divided to get that answer?

    • @owlsmath
      @owlsmath 8 днів тому

      Hi Steven. Yes and no to your first question. There is no really simple quick way to calculate it that I know of but I did do a video on how to do the calculation yourself in a spreadsheet: ua-cam.com/video/sRvF6Um3vE0/v-deo.htmlsi=hinEkEhrFQzNBPN_

  • @reaperskyfall6691
    @reaperskyfall6691 9 днів тому

    Sir I have doubt if we open it using traditional method we got some standard solutions for summisions

    • @owlsmath
      @owlsmath 8 днів тому

      Hi Skyfall. Do you have a question about it?

    • @reaperskyfall6691
      @reaperskyfall6691 8 днів тому

      Sorry currently not​@@owlsmath

    • @owlsmath
      @owlsmath 8 днів тому

      @@reaperskyfall6691 no problem! :)

  • @TimL_
    @TimL_ 9 днів тому

    Very nice.

  • @kyletheswan4513
    @kyletheswan4513 10 днів тому

    How come you can’t just trig substitute x for (cotu)^2 and use trig identities to simplify the expression?

    • @owlsmath
      @owlsmath 9 днів тому

      Hi Kyle. I didn’t try that. I also did it with a u-sub for the whole sqrt expression and that works fine. It actually simplifies the floor part of the calculation that way

  • @erezsolomon3838
    @erezsolomon3838 10 днів тому

    u = 1/x leads to int(1/(u²+1)²) and then u = tan(t) leads to int(cos²(t)) from 0 to π/2, which leads to the same answer of π/4

    • @owlsmath
      @owlsmath 10 днів тому

      Very nice method :) 👍👍

  • @mjkhoi6961
    @mjkhoi6961 10 днів тому

    I tried it myself before I clicked and I thought I messed up somewhere, because when I checked my answer in Desmos it gave me 1.763... instead for some reason (floating point error?)

    • @owlsmath
      @owlsmath 10 днів тому

      Huh. Can Desmos find the area under the curve?

  • @reaperskyfall6691
    @reaperskyfall6691 10 днів тому

    Sometimes I really hate the complex ones

    • @owlsmath
      @owlsmath 10 днів тому

      Ha! Yeah I try to avoid it if I’m tired. 😂

  • @ManojkantSamal
    @ManojkantSamal 11 днів тому

    Applying Lambert w function, I got that X=2.16 (approximately )

  • @rhijus356
    @rhijus356 11 днів тому

    that's just how the constant is defined tho. you just "undiscretized" the summation into an integral using the floor function edit: nvm looked like you already said that in the video

    • @owlsmath
      @owlsmath 11 днів тому

      yep you summed up the whole thing :)

  • @fireballman31
    @fireballman31 11 днів тому

    I'm usually too lazy to do these but this was nice

  • @pavlopanasiuk7297
    @pavlopanasiuk7297 11 днів тому

    Yes, I did in fact guess

    • @owlsmath
      @owlsmath 11 днів тому

      very nice! I would be curious to know what percentage of viewers knew it.

    • @pavlopanasiuk7297
      @pavlopanasiuk7297 11 днів тому

      @@owlsmath I mean I wouldn't begin to guess if you did not suggest; I would only immediately presume dependence on the E-M constant. Whoever knows enough about this constant should be able to guess. The rest depends on your audience, you probably know better :)

  • @slavinojunepri7648
    @slavinojunepri7648 12 днів тому

    Excellent

  • @adandap
    @adandap 12 днів тому

    When I saw the thumbnail I suddenly had a craving for oily macaroni, as opposed to a quarter of a pie...

    • @owlsmath
      @owlsmath 12 днів тому

      ha! I'm going to read between the lines and say you're one of the people that can do it from the thumbnail 😆😂

    • @owlsmath
      @owlsmath 12 днів тому

      Btw: I missed the quarter of a pi reference the first time around. Excellent! 😆

    • @adandap
      @adandap 12 днів тому

      @owlsmath Thank you. I'm here all week.

    • @owlsmath
      @owlsmath 11 днів тому

      @@adandap excellent. You could be "Standup Maths" part 2

  • @reaperskyfall6691
    @reaperskyfall6691 12 днів тому

    Nice Job!

    • @owlsmath
      @owlsmath 12 днів тому

      Thanks Skyfall! :) Have a good day

  • @MikeMagTech
    @MikeMagTech 13 днів тому

    Nice job!

    • @owlsmath
      @owlsmath 12 днів тому

      thank you Mike 😀😀😀

  • @erezsolomon3838
    @erezsolomon3838 13 днів тому

    Did it in my head :)

  • @slavinojunepri7648
    @slavinojunepri7648 15 днів тому

    Excellent approach

    • @owlsmath
      @owlsmath 15 днів тому

      thanks Slavino!

  • @mollaconan
    @mollaconan 15 днів тому

    Your way of finding the coefficients of the linear combination just blew my mind! If I were at that point, I'd take the usual donkey work of foiling out and setting the coefficients of like terms equal. Excellent solution, sir. Thank you.

    • @owlsmath
      @owlsmath 15 днів тому

      Thanks! And multiplying out those coefficients is a good way too! :)

  • @mohandoshi153
    @mohandoshi153 15 днів тому

    Awesome evaluation - great wishful thinking. I must say you out thought the Bee guys with this great wishful thinking.

    • @owlsmath
      @owlsmath 15 днів тому

      Thanks Mohan! I wonder if the "Bee guys" had a different method in mind. 🤔

    • @mohandoshi153
      @mohandoshi153 15 днів тому

      @@owlsmath - would love to see it, if it exists.

    • @mohandoshi153
      @mohandoshi153 15 днів тому

      @@owlsmath - would love to see the different method. If it exists.

  • @reaperskyfall6691
    @reaperskyfall6691 16 днів тому

    Nice tackling of problem sir please bring some derivatives also along with integrals

    • @owlsmath
      @owlsmath 16 днів тому

      Hi Skyefall. good idea! I don't recall ever doing a derivative on the channels. I'll look into it at some point because there are some interesting derivatives out there

  • @fhffhff
    @fhffhff 16 днів тому

    $(0;2π)(sinx+cosx)¹¹dx=$(0;2π)(-sin x+cosx)¹¹dx=$(0;2π)cosx((sinx+cosx)¹⁰-(sinx+cosx)⁸cos(2x)+(sinx+cos x)⁶(cos(2x))²+..+(cos(2x))²(-sinx+co sx)⁶-cos(2x)(-sinx+cosx)⁸+(-sinx+co sx)¹⁰)dx=0

  • @slavinojunepri7648
    @slavinojunepri7648 17 днів тому

    Excellent

  • @doronezri1043
    @doronezri1043 17 днів тому

    Excellent! I wouldn't notice the digamma myself...👏👏👏 Would prob go with the geometric sum...

    • @owlsmath
      @owlsmath 17 днів тому

      thanks! Yep geometric series seems like a good way :)

  • @reaperskyfall6691
    @reaperskyfall6691 17 днів тому

    First seem common terms to be easy but it's not so . Sir , this is my real self apart from skyfall finally I am too confident to face this world by true myself

    • @owlsmath
      @owlsmath 17 днів тому

      Hi Skyfall. Yes I was thinking the same. We end up with something more complicated than what you would expect. So you mean you now have your real picture and name in your profile?

    • @reaperskyfall6691
      @reaperskyfall6691 17 днів тому

      ​@@owlsmathYou are one of the best teacher i found in life and I have immense respect for you to listening my thoughts and I am trying to befriend in online communites to continue maths journey and to study this universe

    • @owlsmath
      @owlsmath 17 днів тому

      @@reaperskyfall6691 thanks. Wish you the best in your journey :)