Another NICE solution using 2024

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ •

  • @krisbrandenberger544
    @krisbrandenberger544 2 місяці тому +4

    The final answer can also be written as (pi/2024)*csc(pi/2024).

    • @owlsmath
      @owlsmath  2 місяці тому +1

      nice! Yep flip the sin over and there it is

  • @taranmellacheruvu2504
    @taranmellacheruvu2504 2 місяці тому +1

    Very fun exploration near the end!

    • @owlsmath
      @owlsmath  2 місяці тому

      Thanks! Yes i really liked that part of this problem :)

  • @MikeMagTech
    @MikeMagTech 2 місяці тому +2

    That ended up being a very interesting and fun problem.

    • @owlsmath
      @owlsmath  2 місяці тому

      thanks Mike! Worked out much nicer than what I expected originally :)

  • @mohandoshi153
    @mohandoshi153 2 місяці тому +6

    This problem and its evaluation could do any elite school integration Bee proud. Great to the see the Gamma function and the Beta Function pop up. Lovely solution development.

    • @owlsmath
      @owlsmath  2 місяці тому

      Thanks Mohan! Yes really liked this one and the fact that we get both an exact solution and a nice estimate. 👍

  • @adandap
    @adandap Місяць тому +1

    The approximation will improve every year!

    • @owlsmath
      @owlsmath  Місяць тому

      yes its quite true! 😁

  • @beaumatthews6411
    @beaumatthews6411 Місяць тому +1

    Bro Im straight laughing but this is great!

  • @I_like_smashburgers
    @I_like_smashburgers 2 місяці тому +1

    imagine the question just asked for 3dp lol
    great video btw

  • @the.lemon.linguist
    @the.lemon.linguist 2 місяці тому +1

    i wonder if there's some generalization for this improper integral for any power n in the integrand 1/(x^n + 1)
    or if there may even be a generalized antiderivative

    • @theelk801
      @theelk801 2 місяці тому +1

      there most definitely is, you can use the residue theorem to do it

    • @owlsmath
      @owlsmath  2 місяці тому +2

      Yes the formula is pi/ (a sin pi/a ). For a > 1

    • @koennako2195
      @koennako2195 2 місяці тому +1

      Yeah. I remember watching a Dr. Payam video on this generalization. Cool stuff!

    • @krisbrandenberger544
      @krisbrandenberger544 2 місяці тому +2

      The final answer can also be written as (pi/2024)*csc(pi/2024).

    • @vijaypraneeth2736
      @vijaypraneeth2736 2 місяці тому +1

      Michael Penn got a video on it, he generalized it.Check it out