Danny Arends
Danny Arends
  • 146
  • 302 314
Dutch German Friendship - Viewer Reward 4
Danny draws a Dutch-German Friendship sketch as a viewer reward during the Twitch live stream. I make sketch drawings with the best intentions, but always end up asking myself: "Where did it go wrong ?"
Let me know in the comments !
Thanks for taking an interest in my channel 😄I do lectures on bioinformatics and R programming. Subscribe to my UA-cam, and/or join me during my live streams Thursday afternoons on Twitch @ www.twitch.tv/dannyarends
#SketchDrawing #DannyDraws #friendship #Dutch #German #GoodIntentions #Drawing #TwitchLecture #Art #viewerspickthetopics
Переглядів: 280

Відео

30min PhD thesis - Correlated Trait Locus (CTL) mapping
Переглядів 7812 роки тому
30min PhD thesis - Correlated Trait Locus (CTL) mapping
The next R course - Your Feedback and Suggestions!
Переглядів 3602 роки тому
The next R course - Your Feedback and Suggestions!
Summary and Example Exam Questions (Bioinformatics S15E2)
Переглядів 8942 роки тому
Summary and Example Exam Questions (Bioinformatics S15E2)
Course Summary - (Bioinformatics S15E1)
Переглядів 5252 роки тому
Course Summary - (Bioinformatics S15E1)
Citations, Reference Managers, and Version Control (Bioinformatics S14)
Переглядів 2902 роки тому
Citations, Reference Managers, and Version Control (Bioinformatics S14)
Volcano plot in R - (Bioinformatics - Answers S12)
Переглядів 1,9 тис.2 роки тому
Volcano plot in R - (Bioinformatics - Answers S12)
DNA Metabarcoding of eDNA/eRNA (Bioinformatics S14E1)
Переглядів 6 тис.2 роки тому
DNA Metabarcoding of eDNA/eRNA (Bioinformatics S14E1)
Standards for Analysis (Bioinformatics S13E1)
Переглядів 3402 роки тому
Standards for Analysis (Bioinformatics S13E1)
An R package in 15 minutes (Bioinformatics S13E2)
Переглядів 4542 роки тому
An R package in 15 minutes (Bioinformatics S13E2)
Camera Trap Image Analysis at the Chinko Nature Reserve (Bioinformatics)
Переглядів 7652 роки тому
Camera Trap Image Analysis at the Chinko Nature Reserve (Bioinformatics)
Gene Ontology and mRNA visualization (Bioinformatics S12E2)
Переглядів 7772 роки тому
Gene Ontology and mRNA visualization (Bioinformatics S12E2)
Gene Expression Analysis (Bioinformatics S12E1)
Переглядів 2,5 тис.2 роки тому
Gene Expression Analysis (Bioinformatics S12E1)
Answers S11 - MSA Assignment in R (Bioinformatics)
Переглядів 1,4 тис.2 роки тому
Answers S11 - MSA Assignment in R (Bioinformatics)
Multiple Sequence Alignment (MSA) in R (Bioinformatics S11E2)
Переглядів 7 тис.2 роки тому
Multiple Sequence Alignment (MSA) in R (Bioinformatics S11E2)
Sequence Alignment, Scoring, and Analysis (Bioinformatics S11E1)
Переглядів 2,9 тис.2 роки тому
Sequence Alignment, Scoring, and Analysis (Bioinformatics S11E1)
Answers S10, PubMed, biomaRt, and BLAST - (Bioinformatics S11E0)
Переглядів 3702 роки тому
Answers S10, PubMed, biomaRt, and BLAST - (Bioinformatics S11E0)
SNP chip data, PCA, and biomaRt in R (Bioinformatics S10E3)
Переглядів 9982 роки тому
SNP chip data, PCA, and biomaRt in R (Bioinformatics S10E3)
Databases and biomaRt (Bioinformatics S10E2)
Переглядів 3942 роки тому
Databases and biomaRt (Bioinformatics S10E2)
Databases and biomaRt (Bioinformatics S10E1)
Переглядів 5672 роки тому
Databases and biomaRt (Bioinformatics S10E1)
Primer Design for RNA/DNA amplification (Bioinformatics S9E3)
Переглядів 3852 роки тому
Primer Design for RNA/DNA amplification (Bioinformatics S9E3)
Primer Design for RNA/DNA amplification (Bioinformatics S9E2)
Переглядів 5602 роки тому
Primer Design for RNA/DNA amplification (Bioinformatics S9E2)
Primer Design for RNA/DNA amplification (Bioinformatics S9E1)
Переглядів 1 тис.2 роки тому
Primer Design for RNA/DNA amplification (Bioinformatics S9E1)
Correlated Trait Locus (CTL) mapping (Bioinformatics S8Ex)
Переглядів 512 роки тому
Correlated Trait Locus (CTL) mapping (Bioinformatics S8Ex)
QTL mapping and GWAS (Bioinformatics S8E2)
Переглядів 3,2 тис.2 роки тому
QTL mapping and GWAS (Bioinformatics S8E2)
QTL mapping and GWAS (Bioinformatics S8E1)
Переглядів 3,1 тис.2 роки тому
QTL mapping and GWAS (Bioinformatics S8E1)
Answers S6 - Pathway analysis (Bioinformatics S8E0)
Переглядів 4162 роки тому
Answers S6 - Pathway analysis (Bioinformatics S8E0)
Introduction into R - Regression (Bioinformatics S7E3)
Переглядів 4582 роки тому
Introduction into R - Regression (Bioinformatics S7E3)
Introduction into R - Basics 2 (Bioinformatics S7E2)
Переглядів 4362 роки тому
Introduction into R - Basics 2 (Bioinformatics S7E2)
Pufferfish - Viewer Reward 3
Переглядів 932 роки тому
Pufferfish - Viewer Reward 3

КОМЕНТАРІ

  • @charljustinedarapisa6758
    @charljustinedarapisa6758 День тому

    Thank you for the free tutorial. Most tutorials online arent free. Im also a student at HUB. Sending much love and power to your channel Prof. :)

    • @DannyArends
      @DannyArends День тому

      Thanks, and yes I'm a big fan of free and open education and software. I can code all day and write one tool, but if I teach others, we'll have the many tools we need much faster.

  • @dereksniper
    @dereksniper День тому

    Thank you for the visuals and resources

  • @dereksniper
    @dereksniper 2 дні тому

    Appreciate the content!

  • @dereksniper
    @dereksniper 2 дні тому

    Thank you for going over it with R

  • @dereksniper
    @dereksniper 2 дні тому

    thank you for sharing these!

  • @dereksniper
    @dereksniper 2 дні тому

    Thank you!

  • @dereksniper
    @dereksniper 3 дні тому

    Thank you for the lecture!

  • @NiloferFathimaS-s7o
    @NiloferFathimaS-s7o 4 дні тому

    thank you

  • @samuelnti5575
    @samuelnti5575 9 днів тому

    Thank you very much, Dr. I would be grateful if you could help me with the books. I have just a chance at your videos, and I trust they will bless me with statistics with R. Thank you for the great impact

    • @DannyArends
      @DannyArends 9 днів тому

      Sure, just drop me an email and I can see how I can help you out.

  • @jeremywright9511
    @jeremywright9511 10 днів тому

    Do you think bioinformatics can be a baseline for something like computational neuroscience? I know neuroinformatics is a thing but there are very few institutions that bother to offer that as a focus.

    • @DannyArends
      @DannyArends 9 днів тому

      Yep, it's just labels being put on things. For all fields (neuroinformatics & computational neuro) you just need to code and be an expert in neuro biology. General bioinformatics will give you a basis in both fields (coding & biology), after which you can specialize yourself more into the neurobiology field.

  • @Aya-qm6ci
    @Aya-qm6ci 13 днів тому

    Many thanks! Could you explain how PAM40 for example differs from BLOSUM40 (to make sure I get it right)

    • @DannyArends
      @DannyArends 13 днів тому

      The main differences: PAM is based on global alignments of closely related proteins. BLOSUM is based on local alignments. BLOSUM matrices are based on observed substitutions from local alignments in the Blocks database, in contrast PAM1 is based on observed data of global alignments of closely related proteins, but all higher PAM matrices are extrapolated. Next, is that the numerical coding is inverted, a higher BLOSUM number means the substitution matrix is made by including more related protein sequences (more related), for PAM higher numbers mean more evolutionary time has occured for sequences to diverge (less related). The way I think about it, if you want to score a human protein versus a chimp use high BLOSUM or a low PAM. A human against a spider low BLOSUM or a high PAM. The following article which goes into great detail in how both PAM and BLOSUM matrices are computed: cs.rice.edu/~ogilvie/comp571/pam-vs-blosum/ Hope this helps.

  • @potatosalad535
    @potatosalad535 14 днів тому

    Thank you for the lecture, I got a bit lost with stats. Is there any source(s) to learn stats for bioinformatics and has no prerequisites ? because I only had one course as an undergrad which was an introduction and completely forgot about it.

    • @DannyArends
      @DannyArends 13 днів тому

      I always advise people to pick up the "introductory statistics with R" book. It's a great resource for learning statistics and gives good examples that you can directly play around with in R

    • @potatosalad535
      @potatosalad535 13 днів тому

      @@DannyArends Will do, Thanks!

  • @dereksniper
    @dereksniper 16 днів тому

    Are introns still considered to not be under selective pressure?

    • @DannyArends
      @DannyArends 13 днів тому

      Yes and no, in general introns are under less selective pressure than the coding regions of proteins (CDS), but are under more selective pressure than intergenic regions. However, this last part depends on the type of intron and splicing mechanism relative to what the function of the intergenic region is. In short most DNA is under selective pressure, the strength of this selection is very variable, e.g. the wobble bases in the CDS feel much less pressure than the first two bases of a codon. Selective pressure is furthermore heavily influenced by which protein you look at (and the environment), a ribosomal protein feels much more selective pressure than a pigmentation gene.

    • @dereksniper
      @dereksniper 12 днів тому

      @ Thank you for the insight! Appreciate the response Professor

  • @dereksniper
    @dereksniper 16 днів тому

    Great lecture!

  • @ajibadefelix3697
    @ajibadefelix3697 19 днів тому

    Please, sir, I have worked on algorithms such Ishikawa, Normal S, Mann and F* how can I go through it on the R program

    • @DannyArends
      @DannyArends 19 днів тому

      My guess is that most of the algorithms will be already available in R: Ishikawa diagrams, are provided by the qcc library (they're called cause.and.effect plots) The other 3 algorithms are harder to search for on google, since to me it is unclear to which area of research they are used in.

  • @dereksniper
    @dereksniper 24 дні тому

    Great to see a new method of analysis. All the best on this being more outspoken and used with future developments in science :)

    • @DannyArends
      @DannyArends 23 дні тому

      Much appreciated! I think it's a cool method

  • @dereksniper
    @dereksniper 24 дні тому

    Thank you Prof!

  • @dereksniper
    @dereksniper 24 дні тому

    Appreciate thorough explanations

  • @dereksniper
    @dereksniper 25 днів тому

    Great to see so many accessible databases. Surprised undergrad classes did not show any regarding pathways. Thank you!

  • @dereksniper
    @dereksniper 26 днів тому

    Thank you so much for this lecture! Look forward to the R course as well!

  • @fazlurrahman5017
    @fazlurrahman5017 28 днів тому

    In this tutorial, you have not removed the batch effect, I would like to know it is due to small selection of samples or by using RMA method it got corrected. Thanks for such videos.

    • @DannyArends
      @DannyArends 27 днів тому

      With only 3 samples per group you cannot really detect or deal with batch effects, since they are highly likely to be aligned with the sample groups. The only thing you might be able to do is add a quantile normalization step after RMA, to ensure that every sample has a similar expression level.

    • @fazlurrahman5017
      @fazlurrahman5017 27 днів тому

      ​@@DannyArendsThank you Prof. for your time and effort.

  • @helvalkyrie149
    @helvalkyrie149 29 днів тому

    i couldnt get the assignment what can i do

    • @DannyArends
      @DannyArends 28 днів тому

      If the website isn't working, just drop me an email. You can find my email address on the about page.

  • @dereksniper
    @dereksniper Місяць тому

    Nice to see shared frustration regarding the confusion phylogenetic trees can bring! Thank you for the lecture

    • @DannyArends
      @DannyArends Місяць тому

      Yeah, phylogeny visualized by a tree is a nice way of visualization but it has its downsides.

  • @dereksniper
    @dereksniper Місяць тому

    Another well structured lecture, thank you!

    • @DannyArends
      @DannyArends Місяць тому

      You're welcome, thanks for leaving a comment.

  • @liutrvcyrsui
    @liutrvcyrsui Місяць тому

    +1

  • @Rahimullah-q3e
    @Rahimullah-q3e Місяць тому

    is there a place where i can find problem sets for a given lecture or smthing like that pls let me know about this

    • @DannyArends
      @DannyArends Місяць тому

      Yes, you can get all of the assignments, data, and answers at: dannyarends.nl/bioinfo/ For the lecture slides, they are available on dannyarends.nl/bioinformatik/

    • @Rahimullah-q3e
      @Rahimullah-q3e Місяць тому

      @@DannyArends Thank you very much hats off to you sir

  • @dereksniper
    @dereksniper Місяць тому

    Time stamps are great. Thank you for all the work you do and share!

    • @DannyArends
      @DannyArends Місяць тому

      Longer videos can't go without them, it's just easier to navigate through the content.

  • @dereksniper
    @dereksniper Місяць тому

    Appreciate the thorough lecture

  • @dereksniper
    @dereksniper Місяць тому

    Great lecturer and professor. Thank you

  • @HindElobied
    @HindElobied Місяць тому

    amazing work ! I searched alot to find such a course , your efforts are tremendously appreciated. can you share your email ?

    • @DannyArends
      @DannyArends Місяць тому

      You're very welcome, my email is on the "about" page of the channel, feel free to reach out.

  • @tortora
    @tortora Місяць тому

    Great Video. Thank you. I really appreciate this walk through.

  • @Rahimullah-q3e
    @Rahimullah-q3e Місяць тому

    just started bioinformatics and was looking for resources thank you for all of this

    • @DannyArends
      @DannyArends Місяць тому

      You're welcome, enjoy learning about the wonderful world of bioinformatics

  • @aberakenea2528
    @aberakenea2528 Місяць тому

    Thanks! it is a very insightful video you did but how I can be able to follow your virtual online at the time you will do a video coz I am MSc in Bioinformatics and interested to follow your virtual online.

    • @DannyArends
      @DannyArends Місяць тому

      If you are subscribed to the channel, you'll be informed about upcoming live streams. Generally I post the stream announcement ~ 1 week before the actual stream takes place, so people can plan to attend.

  • @LW114YT
    @LW114YT Місяць тому

    I'd like to do the assignment, but the website is down

    • @DannyArends
      @DannyArends Місяць тому

      rebooted the server, but it seems like someone is using a DDos attack on my website, send me an email (my email is on the about page) and I'll drop you a zip file with the assignments.

    • @LW114YT
      @LW114YT Місяць тому

      @@DannyArends Wow, thanks for the quick answer! I seem to have been a bit impatient, it's working again today :) All the best!

  • @asdasdchen2336
    @asdasdchen2336 Місяць тому

    Thanks for sharing, appreciate it! By the way, I've had a question that's been puzzling me for a while: why does the enrichment of a particular pathway indicate that the pathway is important?

    • @DannyArends
      @DannyArends Місяць тому

      Good question, we generally assume that a perturbation to a homeostatic system (e.g. add a chemical to cell media) will change the system. However, from gene expression you only get a list of genes that are up/down regulated. Gene ontology tries to be an abstraction on top of this to provide a more global overview of what is happening. You could image adding glucose to the media will cause small changes across the whole system, but this won't teach you what the main effect of glucose is. Gene ontology groups genes in different groups, and from that you would expect the system most affected would be the glucose uptake, and the downstream pathway. The same goes for the other non-pathway ontologies. e.g. cellular localisation. If we see that most genes responding to a treatment are located in the mitochondria this will give us a very clear hint that the main effect of the treatment will cause changes to the mitochondria, this can be very helpful to know. Hope this explains it a little bit

  • @ZainabJAMIL-l2w
    @ZainabJAMIL-l2w Місяць тому

    Thank you, sir, for the excellent explanation.

    • @DannyArends
      @DannyArends Місяць тому

      Glad it was helpful! Thanks for leaving a comment.

  • @kantnesragnarok6128
    @kantnesragnarok6128 2 місяці тому

    how can you share pdf ??

    • @DannyArends
      @DannyArends 2 місяці тому

      PDFs are on my website: lecture PDFs at: dannyarends.nl/rlectures/ Assignments, Data, and Answers at: dannyarends.nl/r2022/ If you cannot download it for some reason, do send me an email and I can send you a zip file

    • @kantnesragnarok6128
      @kantnesragnarok6128 2 місяці тому

      @@DannyArends thank you so much professor i can download all , thank you very much .

  • @mervanbayraktar5269
    @mervanbayraktar5269 2 місяці тому

    Thank you very much, how can I contact you please

    • @DannyArends
      @DannyArends 2 місяці тому

      My email address is on the about page of the UA-cam channel.

  • @sueyue6650
    @sueyue6650 2 місяці тому

    @Thank you so much for the lecture with amazing 3D animation! @38:00 There are multiple short strand of mRNA around the cluster of ribosomes. I am just wondering that in most of animation found in UA-cam and textbook, the ribosomes are always pair up with ONE strand of RNA. Q1. In reality, is ribosomes surrendered by multiple mRNA? If so, what determines the priority of processing? Q2. Can the hole deal with multiple production lines (rRNA) at the same time?

    • @DannyArends
      @DannyArends 2 місяці тому

      The ribosome translates a single mRNA molecule into a protein at a time. However to do this it uses different ribosomal associated RNA molecules, the ribosome is a complex of several proteins and several rRNAs that work together. In the animation we see the crystal structure of just the ribosome (proteins & rRNA), no mRNA is present. Q1: Only a single mRNA is translated into a protein at a given time Q2: No, see answer Q1 You can learn more at en.wikipedia.org/wiki/Ribosomal_RNA (section: "Subunits and associated ribosomal RNA") for the different types of associated rRNA molecules and how they differ between prokaryotes and eukaryotes.

    • @sueyue6650
      @sueyue6650 2 місяці тому

      Thank you! Just to clarify, what is those half helix appeared at 37:14?

    • @DannyArends
      @DannyArends 2 місяці тому

      Sorry missed the reply, those helix structures are probably ribosomal subunit associated RNAs

    • @sueyue6650
      @sueyue6650 2 місяці тому

      ​@@DannyArendsNo worries. For me, it takes time to absorb the wiki content. Thanks!

  • @soheilbehravesh3114
    @soheilbehravesh3114 2 місяці тому

    Very interesting idea and methodology. Thank you for sharing it.

    • @DannyArends
      @DannyArends 2 місяці тому

      You're welcome, the idea (and software implementation) was the foundation of my PhD thesis

    • @soheilbehravesh3114
      @soheilbehravesh3114 2 місяці тому

      @@DannyArends Yes, it seems like lots of hard work.

  • @soheilbehravesh3114
    @soheilbehravesh3114 2 місяці тому

    Thank you very much for providing the pipeline and went through it stepp by step, Dr. Arends. Very helpful. Appreciate it. Looking forward to your next streamings and videos.

    • @DannyArends
      @DannyArends 2 місяці тому

      You're welcome, got some new things I'm working on.

    • @soheilbehravesh3114
      @soheilbehravesh3114 2 місяці тому

      @@DannyArends Excited about it. Looking forward to it.

  • @mateuslemos126
    @mateuslemos126 2 місяці тому

    I'm binge watching all your lectures!

  • @mateuslemos126
    @mateuslemos126 2 місяці тому

    This lecture was awesome, sir!

  • @vondhanaramesh4365
    @vondhanaramesh4365 2 місяці тому

    sorry for the disturbance, the link that you have provided for debian is 12.6.0, but what you have used in the video is 11.5.0, can you please provide the link for 11.5.0?

    • @DannyArends
      @DannyArends 2 місяці тому

      No bother, yeah It seems a newer version was released, you can always get the older versions from the archives, a direct link to the 11.5.0 netinst image: cdimage.debian.org/mirror/cdimage/archive/11.5.0/amd64/iso-cd/debian-11.5.0-amd64-netinst.iso

    • @vondhanaramesh4365
      @vondhanaramesh4365 2 місяці тому

      @@DannyArends thanks a ton

  • @vondhanaramesh4365
    @vondhanaramesh4365 2 місяці тому

    What to do if the compilation for trimmomatic has mot been done?

    • @DannyArends
      @DannyArends 2 місяці тому

      In that case just download trimmomatic v0.39 from here: www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.39.zip and extract it. Make sure to update the script to reflect that you're using 0.39 not 0.40-rc1

    • @vondhanaramesh4365
      @vondhanaramesh4365 2 місяці тому

      @@DannyArends thank you so much and also the virtual box version what you have used in the tutorial and the one in the pdf is different, is it fine?

    • @DannyArends
      @DannyArends 2 місяці тому

      The version of virtual box should not matter, the important part is to use the same Debian version

  • @vondhanaramesh4365
    @vondhanaramesh4365 2 місяці тому

    Hi , there's a problem in running trimmomatic, it says unable to access jarfile dist/jar/trimmomatix-0.40-rcl.jar

    • @DannyArends
      @DannyArends 2 місяці тому

      This error means that the trimmomatic jar file wasn't found at the path specified. Use the debian file browser to confirm that the file is really there.

  • @vondhanaramesh4365
    @vondhanaramesh4365 2 місяці тому

    Hi Danny, i have 16gb RAM memory in my laptop, will i be able to do RNA seq?

    • @DannyArends
      @DannyArends 2 місяці тому

      For smaller data sets and genomes, 16 Gb will be enough (e.g. Yeast, Bacteria, Bees, some Plants). For Mouse or Human, 16 Gb is probably not going to be enough, and 32 / 64 Gb is going to be the minimum.