Marcos Alonso
Marcos Alonso
  • 241
  • 355 422
TT #7: Magnetics Library for Qspice
This video introduces the Magnetics library for Qspice. This library was presented previously in video ua-cam.com/video/k3KCunxsHkw/v-deo.html with a version for LTspice.
In this video we show 3 examples of application of this library. Full information and application can be found in my book: Inductors. Variable and Controllable. J. Marco Alonso. Amazon KDP. 2021.
www.amazon.com/dp/B094CWJLPB
Переглядів: 439

Відео

PE #71: Improved Dynamic Model of Current-Mode-Controlled DC-DC Converters
Переглядів 40621 день тому
This video shows the derivation of an improved dynamic model of current-mode-controlled dc-dc converters. The model is based on the analysis of the current-mode modulator in the discrete domain. A continuous model is also derived. Qspice simulations are shown to verify the model.
PE #70: Solving Difference Equations
Переглядів 383Місяць тому
This video explains the procedure to solve difference equations. The procedure is explained by comparison with the procedure of solving differential equations. In the video we talk also about natural and forced responses of a dynamic system and how the complete response of a linear or linearized system can be obtained by superposition of both the natural response and the forced response.
PE #69: Digital Control of a Current-Mode DC-DC Buck Converter. Compensator Direct Synthesis
Переглядів 612Місяць тому
In this video we show how to design a digital compensator by direct synthesis. The compensator is used to implement a closed-loop current mode dc-dc converter.
DE #12: How to Program a Raspberry Pi Pico in C/C++. PWM and ADC Modules
Переглядів 330Місяць тому
This video shows how to program the PWM and ADC modules of a Raspberry Pi Pico in C/C . The video shows how to generate a PWM signal with variable frequency and duty cycle, and how to measure an analog signal using the ADC module. The goal is to use these techniques in the implementation of a digital controlled dc-dc converter. The ADC will measure the output voltage and the PWM module will gen...
PE #68: System Discretization (II)
Переглядів 383Місяць тому
In this second part we see how to discretize the transfer function of a current-mode dc-dc buck converter. Qspice simulations are shown to verify the correctness of the discretization process.
DE #11: How to Program a Raspberry Pi Pico in C/C++
Переглядів 400Місяць тому
This video shows how to program the Raspberry Pi Pico in C/C . The Raspberry Pi Pico features the RP2040 microcontroller. Similar process can be used to program any other RP2040-based microcontroller board.
PE #67: System Discretization (I)
Переглядів 5652 місяці тому
In this video we see how to discretize a continuous system. The RC filter is taken as an example. Qspice simulations are shown to illustrate the different ideas. In the second part we will see how to discretize the transfer function of a dc-dc converter.
TT #6: Automatic Symbol Generation in LTspice
Переглядів 2932 місяці тому
This video shows how to create a third-party model in LTspice using the automatic symbol generation feature. The IR2110 from Infineon Technologies is used as an example. Simulation examples of the IR2110 driving a half-bridge inverter and a buck dc-dc converter are also shown.
PE #66: Digital Control of a Current-Mode DC-DC Buck Converter
Переглядів 1,2 тис.2 місяці тому
This video explains how to implement a digital control of a current-mode DC-DC buck converter in Qspice. The control includes open-loop operation without auxiliary ramp, open-loop operation with auxiliary ramp, and closed-loop operation with a digital PI controller. #powerelectronics #dcdcconverters #marcosalonsoelectronics
TT #5: How to Handle C++ Module Parameters in Qspice
Переглядів 4822 місяці тому
TT #5: How to Handle C Module Parameters in Qspice
PE #65: Effect of Sampling Period on the Closed-Loop Response of DC-DC Converters
Переглядів 9933 місяці тому
PE #65: Effect of Sampling Period on the Closed-Loop Response of DC-DC Converters
TT #4: How to Embed Components in Qspice (II)
Переглядів 3123 місяці тому
TT #4: How to Embed Components in Qspice (II)
Qspice #9: Current-Mode Push-Pull Converter using the UC1846. Overcurrent Protection
Переглядів 4243 місяці тому
Qspice #9: Current-Mode Push-Pull Converter using the UC1846. Overcurrent Protection
TT #3: How to Embed Components in Qspice
Переглядів 3013 місяці тому
TT #3: How to Embed Components in Qspice
Qspice #8: Current-Mode Push-Pull Converter using the UC1846. Housekeeping Chores
Переглядів 4053 місяці тому
Qspice #8: Current-Mode Push-Pull Converter using the UC1846. Housekeeping Chores
Qspice #7: Current-Mode Push-Pull Converter using the UC1846. Closed-Loop Design
Переглядів 5734 місяці тому
Qspice #7: Current-Mode Push-Pull Converter using the UC1846. Closed-Loop Design
TT #2: How to Plot Converter Characteristics by Qspice Simulation
Переглядів 5184 місяці тому
TT #2: How to Plot Converter Characteristics by Qspice Simulation
Qspice #6: Current-Mode Push-Pull Converter using the UC1846
Переглядів 1 тис.4 місяці тому
Qspice #6: Current-Mode Push-Pull Converter using the UC1846
PE #64: Closed-Loop Compensators: PI versus PID
Переглядів 6154 місяці тому
PE #64: Closed-Loop Compensators: PI versus PID
TT #1: Handling Qspice Libraries
Переглядів 5064 місяці тому
TT #1: Handling Qspice Libraries
PHY #5: Understanding Maxwell's Equations
Переглядів 6894 місяці тому
PHY #5: Understanding Maxwell's Equations
PE #63: A More Detailed Analysis of the Closed-Loop Response of DC-DC Converters
Переглядів 7274 місяці тому
PE #63: A More Detailed Analysis of the Closed-Loop Response of DC-DC Converters
Qspice #5: Closed-Loop Frequency Response of DC-DC Converters
Переглядів 9735 місяців тому
Qspice #5: Closed-Loop Frequency Response of DC-DC Converters
Qspice #4: Frequency Response Analysis of DC-DC Converters
Переглядів 1,6 тис.5 місяців тому
Qspice #4: Frequency Response Analysis of DC-DC Converters
Qspice #3: Closed-Loop Digital Control of a Buck DC-DC Converter
Переглядів 2,3 тис.5 місяців тому
Qspice #3: Closed-Loop Digital Control of a Buck DC-DC Converter
Qspice #2: Digital PWM and Signal Sampling
Переглядів 2,3 тис.5 місяців тому
Qspice #2: Digital PWM and Signal Sampling
Qspice #1: Introduction and How to Create New Components
Переглядів 2,9 тис.6 місяців тому
Qspice #1: Introduction and How to Create New Components
PE #62: 4-Switch Buck-Boost DC-DC Converter (II)
Переглядів 1 тис.6 місяців тому
PE #62: 4-Switch Buck-Boost DC-DC Converter (II)
PE #61: 4-Switch Buck-Boost DC-DC Converter (I)
Переглядів 1,2 тис.6 місяців тому
PE #61: 4-Switch Buck-Boost DC-DC Converter (I)

КОМЕНТАРІ

  • @biswajit681
    @biswajit681 2 дні тому

    Hi sir when is your new video coming

  • @celiaalonso3545
    @celiaalonso3545 3 дні тому

    Wow crazy…is amazing

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics 3 дні тому

    Hundreds of LEDs make big screens!

  • @samet428
    @samet428 4 дні тому

    What a wonderful video!

  • @Nussknacker-fx
    @Nussknacker-fx 6 днів тому

    Hello Professor Alonso, I'd like to ask why do we need C1 here, is it for the DC Block? And R3 is used to adjust the DC current? I'm still a layman of analog circuit, so thanks a lot for your videos 👍and looking forward to your response!

  • @petrusbosman4264
    @petrusbosman4264 6 днів тому

    Thank you Professor, do you have an example that is implemented in the digital domain in Qspice for the anti windup circuit as in your video PE #65 , thank you very much.

  • @ilyasaslan7012
    @ilyasaslan7012 7 днів тому

    What should we do if we get a negative inductance value? In this case, T-model simulation is impossible?

  • @JorgeSilva-em8pf
    @JorgeSilva-em8pf 10 днів тому

    Dera Sir. One sugestion: to explain the IC UCC3808/A and LM25037 and applications. And the type III controller/compensator.

  • @aliasgharakbari4478
    @aliasgharakbari4478 10 днів тому

    thank you very much 🙏

  • @markg1051
    @markg1051 13 днів тому

    Thank you Mr Alonso this looks really good, looking forword to properly trying these models out soon. Looks like lot of fun. I also hope that Mike will add the proper magnetic units so they show correctly on the graphs. Things like T(esla) instead of Volts etc. Cheers

  • @sayederfanfazeli1158
    @sayederfanfazeli1158 14 днів тому

    Thank you for sharing this.

  • @klausziegler60
    @klausziegler60 15 днів тому

    This is the best explanation on how to use this software. It is very precise, very well explained in every respect. Wonderful job!

  • @celiaalonso3545
    @celiaalonso3545 17 днів тому

    Can i ask you some questions in your next live? I need some help with my tesis

  • @RaedMohsen
    @RaedMohsen 17 днів тому

    Brilliant!

  • @petrusbosman4264
    @petrusbosman4264 18 днів тому

    Thank you again Professor, I am using this topology to implement a solar charge controller with a digital control and an ESP32 microcontroller. I am glad to say that it works very well!

  • @biswajit681
    @biswajit681 18 днів тому

    Any plan to do live streaming in future?

  • @mahitvirma
    @mahitvirma 18 днів тому

    Great idea prof, looking forward to your future live streams ❤

  • @sabersaberi-r9s
    @sabersaberi-r9s 20 днів тому

    hello professor, excuse me i have one question, in this video, 200kHZ frequency, how you obtained it? in this controller, you did not determine how you put 200kHZ in this IC? IS THERE any video for calculation frequency according to controller?

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 20 днів тому

      Hello, thanks for your question. Frequency is usually a parameter selected by experience. It is not calculated. It depends on the topology, type of switching (ZVS, ZCS, hard switching, etc.), type of switches (MOSFET, IGBT, bipolar, etc.), power level, target efficiency, etc. Typical frequency range when using MOSFETs is 50 kHz to 200 kHz for hard switching. 100 kHz is the most common switching frequency.

    • @sabersaberi-r9s
      @sabersaberi-r9s 19 днів тому

      @@MarcosAlonsoElectronics thank you for giving these. can you send me your email? because I design a topology and I want to show you my circuit and know your idea thanks

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 19 днів тому

      @@sabersaberi-r9s My email is marcos@uniovi.es

    • @sabersaberi-r9s
      @sabersaberi-r9s 19 днів тому

      @@MarcosAlonsoElectronics thank you so much professor

  • @sabersaberi-r9s
    @sabersaberi-r9s 20 днів тому

    hello professor, thank you for your useful informations, i have a question, for calculating duty cycle in PWM Controller, which video do you prefer? do you have any education about it?

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 20 днів тому

      hello, I am not sure what you mean by calculating duty cycle

    • @sabersaberi-r9s
      @sabersaberi-r9s 20 днів тому

      @@MarcosAlonsoElectronics please can you send me your email for sending you a image of what I mean duty cycle?

  • @sabersaberi-r9s
    @sabersaberi-r9s 21 день тому

    hello Dr Alonso, i hope you are well, I have one question, we can use this current-mode controller in this video for a PFC Z SOURCE converter or Forward converter?

    • @sabersaberi-r9s
      @sabersaberi-r9s 20 днів тому

      i mean that which video in your page is suitable as a controller for a PFC converter and it work really well? which one? thank you

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 20 днів тому

      Videos PE#59 and PE#60 deal with critical mode PFC. Please, take a look

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics 21 день тому

    20:16 There is a mistake here. The correct relationship between DC values Vi and Vo is: Vo=Vi*D/(1+rL/R). So in the final transfer function instead of factor Vo/D it should be: (Vo/D)* (1+rL/R) or just keep Vi. The difference is very small though since usually rL << R

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics 24 дні тому

    17:09 Another typo here. At the bottom of the slide the correct equation is wc=sqrt(12)*f as shown previously. Also: fc=wc/(2*pi)= 0.55*f. Sorry!

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics 24 дні тому

    20:00 The factor 0.85 is used to have the same DC output voltage in the simplified model as in the complete model. However, I realized later that by doing this we were also changing the amplitude of the perturbation of the simplified model. It is better to separate the DC and AC parts. See how on the corrected file available on GitHub: github.com/marcosalonsoelectronics/PE-71

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics 24 дні тому

    13:52 There is a typo in the last equation. Instead of exp(sT) it should be exp(-sT). Sorry!

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics 24 дні тому

    All files are available here: github.com/marcosalonsoelectronics/PE-71

  • @thavakkodi6290
    @thavakkodi6290 25 днів тому

    Sir great video as always . I am currently started working on Current control research for over current applications . Any materials ,tips to follow and authors to refer . information reg this would be helpful.😀

  • @sabersaberi-r9s
    @sabersaberi-r9s 25 днів тому

    hello Dr Alonso, I have one question, we can use this 2 output PWM controller for Forward converter or boost converter? Do you have any PWM controller in your youtube page that should be suitable for Forward converter such as: UC3842 IC. please guide me

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 24 дні тому

      Hello, you can use the controller presented in this video: ua-cam.com/video/8L9D50tRWo4/v-deo.html The model is available from my website

    • @sabersaberi-r9s
      @sabersaberi-r9s 20 днів тому

      @@MarcosAlonsoElectronics hello Dr Alonso, thank you, which video in your page is suitable as a controller for PFC converter? which one? thank you

  • @sabersaberi-r9s
    @sabersaberi-r9s 25 днів тому

    hello Dr Alonso, I have one question, we can use this 2 output PWM controller for Forward converter or boost converter?

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 24 дні тому

      Hello, you can use the controller presented in this video: ua-cam.com/video/8L9D50tRWo4/v-deo.html The model is available from my website

    • @sabersaberi-r9s
      @sabersaberi-r9s 24 дні тому

      @@MarcosAlonsoElectronics thank you, Dr Alonso, I have one question, it means that we can use this 2 output PWM controller or ua-cam.com/video/8L9D50tRWo4/v-deo.html for Forward converter ?

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics 23 дні тому

      @@sabersaberi-r9s For the forward converter it is better to use the 1-output controller. The 2-output controller is intended for push-pull, half-bridge, etc.

    • @sabersaberi-r9s
      @sabersaberi-r9s 20 днів тому

      @@MarcosAlonsoElectronics thank you Dr Alonso, will this 1-output controller be suitable for PFC converter?

  • @user-pv6fs6rx9w
    @user-pv6fs6rx9w 26 днів тому

    Hello sir, this is my simulation. It contains a 3 phase closed loop inverter and a 3 phase closed loop rectifier. For the inverter it has been successful, but for the rectifier it has not been successful. I still can't solve it, sir.

  • @user-eq8in2xw6y
    @user-eq8in2xw6y 29 днів тому

    Would you recommend learning qspice or ltspice? For someone with now much knowledge on either

  • @user-pv6fs6rx9w
    @user-pv6fs6rx9w Місяць тому

    Hello sir, can you make a tutorial for simulating a 3 phase active rectifier in QSpice? Thanks

  • @konstantinz6404
    @konstantinz6404 Місяць тому

    Every your video like a brilliant! Thanks for your work!

  • @daitrinh8602
    @daitrinh8602 Місяць тому

    Thanks for the video. I downloaded the final model you provided, but however, the simulation stopped at a fatal error (Warning: Singular matrix. Check node D1 Fatal error: Timestep too small(1.25e-19) at t=4.51505e-14). Do you have any idea? I have added several resistors between nodes, such as D1 and D2, but the total simulation time is very long.

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics Місяць тому

      The three files work fine on my computer. Download them again and do no make any change

  • @MishraKenhat-ju7jy
    @MishraKenhat-ju7jy Місяць тому

    Thanks for this excellent lesson, professor 👍

  • @nrusinghabehera1984
    @nrusinghabehera1984 Місяць тому

    ❤ from India

  • @Aquio55
    @Aquio55 Місяць тому

    Hola Sr. Alonso. Tengo una duda respecto a este tema, el comportamiento de un circuito secuencial asíncronico además de depender de las señales de entrada en cualquier instante dado, depende de los estados de los elementos de memoria o del orden en el que cambian las entradas? Sus explicaciones son exelentes.

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics Місяць тому

      Hola, gracias por su comentario. Sí, como se muestra en el esquema en 7:53, las salidas dependen del valor de las entradas y del valor de las variables internas o de estado del sistema. Se supone que las entradas van a cambiar de forma más lenta que el tiempo de respuesta del circuito. En otro caso, si las entradas cambian muy rápidamente, el sistema no tendría tiempo de responder y no funcionaría correctamente

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    9:17 The green line is the loop gain: T(s)=C(s)*k_pwm*Gd(s)*H(s). I forgot adding k_pwm to the expression of T(s) in the slide.

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    @MarcosAlonsoElectronics 1 year ago All files are available at: github.com/marcosalonsoelectronics/LTspice-19

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available at: github.com/marcosalonsoelectronics/LTspice-18

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available at: github.com/marcosalonsoelectronics/LTspice-17

  • @patrickliew2756
    @patrickliew2756 Місяць тому

    Hello Dr, why there is no +Vcc and -Vcc for the operational amplifier?

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics Місяць тому

      Hello, in this case the limiting of the duty cycle is done at the optocoupler output. You can use an opamp with power supplies, there is no problem. It was done this way to make it simpler.

  • @patrickliew2756
    @patrickliew2756 Місяць тому

    Hello Dr, based on 14:09, the green line (loop gain) is the open loop transfer function of the system right ?

  • @patrickliew2756
    @patrickliew2756 Місяць тому

    Hello Dr, based on 23:09, Why does the v(c) increase and why does the out current decrease even though the duty cycle increases?

    • @MarcosAlonsoElectronics
      @MarcosAlonsoElectronics Місяць тому

      Hello, at the step instant the output voltage is 71.6 V approx. The lamp threshold voltage increases to 73.8 V very quickly. Because of Co the output voltage cannot change quickly so at the step instant the lamp current goes to zero (71.6 < 73.8, so the lamp diode blocks). The compensator "sees" the drop of the lamp current and reacts giving maximum output, which saturates at the limiting value of D=0.3. With this increase of the duty cycle the lamp current starts increasing, the compensator goes into linear operation again, and eventually the new steady state point is reached. A higher value of the average duty cycle is needed at the new operating point because the lamp voltage is now higher, so the converter output voltage has to be higher too.

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available here: github.com/marcosalonsoelectronics/PE-69

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    10:48 I have found that there is a mistake in the value of the flat gain between poles. The correct expression is the following: 20*log( (1+R3/R1)*R2/R3 ). Sorry about that!

    • @JorgeSilva-em8pf
      @JorgeSilva-em8pf 7 днів тому

      De qualquer forma, o vídeo é ótimo. A comparação PI contra PID na mesma simulação é bem didático. Sucesso.

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available here: github.com/marcosalonsoelectronics/FEMM-6

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available here: github.com/marcosalonsoelectronics/FEMM-5

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available here: github.com/marcosalonsoelectronics/FEMM-4

  • @MarcosAlonsoElectronics
    @MarcosAlonsoElectronics Місяць тому

    All files are available here: github.com/marcosalonsoelectronics/FEMM-3