10 ML algorithms in 45 minutes | machine learning algorithms for data science | machine learning

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ •

  • @naveenarunkumar95
    @naveenarunkumar95 Рік тому +15

    So Easy to Understand all the concepts of ML Thank you for this

  • @muditmathur465
    @muditmathur465 Рік тому +39

    Thanks, this came really handy 1 day before interview 😁👍

  • @Srinivascheekati681
    @Srinivascheekati681 Рік тому +17

    Hi ,This Ch Srinivas ( EX Faculty in ACE academy and currently working in MADE EASY IES, I would appreciate your teaching process . Thanks for sharing your knowledge. GOD bless you. I am planning to do PhD in Data Science please give me your valuable suggestions. Thanks

  • @swethamadhavarapu3018
    @swethamadhavarapu3018 9 місяців тому +2

    Great video, simple easy to understand explanation for beginners. Thank you!

  • @surajitchanda1975
    @surajitchanda1975 9 місяців тому +1

    A very good lecture to refresh my knowledge my name is Surajit Chanda i am an instrumentation engineer and also a Software Engineer

  • @tadhailu
    @tadhailu Рік тому +2

    Very important, I need to watch it again and again.

  • @dheenadhayalan423
    @dheenadhayalan423 Рік тому +18

    All the prerequisites I was hoping for was covered and explained clearly. Thank You sir !

  • @itsme1674
    @itsme1674 2 роки тому +89

    Machine learning is nothing but learning pattern from a data using an algorithm. An algorithm is set of steps that are executed in an order to reach final solution.

  • @kamaleshwaran06
    @kamaleshwaran06 Рік тому +2

    Best Video for a quick introduction/refresher on ML Algorithms. Kudos!

  • @pritus9537
    @pritus9537 9 місяців тому

    Very simple and effective method of teaching all algorithms

  • @ishanagpurkar
    @ishanagpurkar Рік тому +1

    This is a very good video for revision of ml models.

  • @hgowda11
    @hgowda11 7 місяців тому +2

    This is an excellent and time-efficient video with a great explanation.

  • @user-vo9kh4zd3f
    @user-vo9kh4zd3f Рік тому

    this is very helpful video those who want to gain basic knowledge in ML algos
    but uh did a mistake in Gradient boost calculation in 23:44 .
    once check it

  • @navya-s3v
    @navya-s3v 3 місяці тому

    Artificial intelligence algorithms are vital in data science. They help computers to learn from data and generate predictions or conclusions, which are used in applications such as image recognition, natural language processing, and recommendation systems.

  • @satyagarapati3611
    @satyagarapati3611 8 місяців тому

    Great Aman!!
    Wonderful explanation ❤

  • @someshwarrao7357
    @someshwarrao7357 Місяць тому

    Very Nicely and firmly explained the concepts and usage.

  • @dvabhinav31
    @dvabhinav31 8 місяців тому

    Helped with understanding logistic regression!

  • @Er.Sunil.Pedgaonkar
    @Er.Sunil.Pedgaonkar Рік тому

    Good -- Er. Sunil Pedgaonkar, Consulting Engineer (IT)

  • @romualdcieciura9902
    @romualdcieciura9902 3 місяці тому

    Suuuper. Bardzo, bardzo, bardzo dobrze wytłumaczone. Dziękuję

  • @sagarambhore4677
    @sagarambhore4677 10 днів тому

    Greate teaching sir....🙏

  • @noormohammadatapoor3119
    @noormohammadatapoor3119 7 місяців тому

    Both the decision tree and Random Forest also can be used in classification tasks. Therefore they cannot be limited only to regression tasks.

    • @UnfoldDataScience
      @UnfoldDataScience  7 місяців тому

      Yes absolutely. I took that in regression category to have variation of regression models.thanks for message

  • @explorewithskp1237
    @explorewithskp1237 2 роки тому +6

    Thank U Sir . Clearly got an idea on all algorithms in very short time ☺️

  • @tirupathimujjiga7912
    @tirupathimujjiga7912 3 місяці тому

    Great video meaningful and clearly explained. God bless you.

  • @godfreyuzonwanne3110
    @godfreyuzonwanne3110 4 місяці тому

    This is a very simple demystification of a complex topic. Great job here. I love the very straight definition of machine learning presented here ... understanding patterns in the data using algorithms 🎉

  • @dd1278
    @dd1278 2 роки тому +6

    Thanks for this..quite a critical video for everyone who's having interview (s) lined up.

  • @balajigayathribala
    @balajigayathribala Місяць тому

    Thanks, wonderful explanation.

  • @sukumarane2302
    @sukumarane2302 9 місяців тому

    Good presentation . Thanks 👍

  • @RakiatHaruna-cx8jh
    @RakiatHaruna-cx8jh Рік тому +4

    Thank you for the beautiful presentation. Could you please give an example using spatial data.

  • @chandrusm-c9r
    @chandrusm-c9r Рік тому

    very pretty and clear explanation .stay tuned and thanks very much buddy

  • @vamsivegi
    @vamsivegi Рік тому +1

    Wish this kind of tutorial 5 years ago. But it’s not too late. Simply one the best.

  • @damienlomath1766
    @damienlomath1766 4 місяці тому

    wow very educative , perfect and practical examples makes it clear, precise and concise

  • @pawankumarjm
    @pawankumarjm Рік тому

    This is the best explanation till I saw..😊

  • @VinayAggarwal
    @VinayAggarwal Рік тому +11

    This is super helpful. Thanks for putting this together. ❤
    Can these all work on more then 2D data ?

  • @tadhailu
    @tadhailu Місяць тому

    I like the way he explains,.

  • @mahendrachauhan63
    @mahendrachauhan63 Рік тому

    Nice, super Duper, you are awesome boss

  • @karanalang1573
    @karanalang1573 Рік тому +1

    thanks for this very helpful video !

  • @anthonymary1cyril5
    @anthonymary1cyril5 Місяць тому

    thanks sir it was easy to understand

  • @saramohammed5421
    @saramohammed5421 5 місяців тому

    Thank you this is very helpful and easy to understand!

  • @mahmoudshanshoury5643
    @mahmoudshanshoury5643 7 місяців тому

    Thank you for the beautiful presentation.

  • @Griffindor21
    @Griffindor21 9 місяців тому

    Great video!
    Decision Tree can also do classification as well, right?

  • @Latif127
    @Latif127 Рік тому

    It looked good to me, thank you.

  • @leonine291
    @leonine291 Рік тому

    زبردست ❤

  • @Paladipradeep
    @Paladipradeep 2 роки тому +2

    It was indeed a great session, thanks

  • @JayanandanT
    @JayanandanT Рік тому

    Very good Video. As a beginner i understood the basics well. Definitely will recommend to my students. Thankyou for the effort you put into the Presentation.

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому

      So nice of you. Please share with friends as well. Welcome to Unfold data science family :)

  • @Ashish_Shinde9623
    @Ashish_Shinde9623 Рік тому

    Very Informative video, thank you

  • @VISHNUPRASADSAKHAMURI
    @VISHNUPRASADSAKHAMURI Рік тому +4

    Hi
    This video is very informative. thanks you so much..
    Can you suggest which algorithm is best suited for below use case
    "scan the kuberbetes pods for application exceptions and feed the algorithm.. let the model store this info along with impact assessment, to raise the alerts only for critical exception"

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому +1

      Thanks For watching.yoy can research on isolation forest or random cut forest

  • @ganeshsubramanian6217
    @ganeshsubramanian6217 Рік тому

    Very good explanation Aman🎉

  • @NithishKumar-ng7dp
    @NithishKumar-ng7dp Рік тому

    Good Explanation Sir

  • @sureshkumar-cn5jr
    @sureshkumar-cn5jr Рік тому +2

    Useful content Aman!
    Thanks for your efforts to teach complicated but important concepts in M L

  • @researchhub2727
    @researchhub2727 6 місяців тому

    Excellent sir 🎉

  • @sircosm
    @sircosm Рік тому

    Nicely explained! Very helpful.

  • @katamreddiprasad418
    @katamreddiprasad418 Рік тому

    Very informative. Thank u...

  • @swwapnas8741
    @swwapnas8741 4 місяці тому

    nice way of teaching

  • @shivagupta2052
    @shivagupta2052 2 роки тому +2

    Great session . Can you sir make a video regarding project where you apply all ml algorithm and also do model development and same for deep learning

  • @VikasVerma-xf6hb
    @VikasVerma-xf6hb Рік тому

    Thank you. Very nicely explained. Kudos to you. Keep-up the good work.

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому +1

      Thanks Vikas. Apne friends group me bhi share kar dijie.

  • @lakshmanthota8902
    @lakshmanthota8902 8 місяців тому

    Very handy for a quick recall

  • @vishsara
    @vishsara 5 місяців тому

    very useful video, thanks

  • @ajaykumargupta5862
    @ajaykumargupta5862 Рік тому

    Great session and well explained. Thank you sir. Please create more videos to explore more.

  • @happylearning-gp
    @happylearning-gp Рік тому

    Excellent, Thank you very much

  • @spicytuna08
    @spicytuna08 2 роки тому +1

    wow. awesome summary,

  • @divyasri9529
    @divyasri9529 Місяць тому

    helpful👍

  • @vasutke1187
    @vasutke1187 Рік тому

    Sir, Ultimate Teaching Style, Sequence of arranging Topics are highly help full to us. Great

  • @ishaqmuhammadabubakar3308
    @ishaqmuhammadabubakar3308 2 місяці тому

    Nice one thanks

  • @kennethstephani692
    @kennethstephani692 Рік тому

    Great video!!

  • @storiesshubham4145
    @storiesshubham4145 Рік тому

    Liked it even before watching

  • @upadisetty
    @upadisetty 4 місяці тому

    great stuff, thanks

  • @SethiGaneswar
    @SethiGaneswar Рік тому

    Great presentation and i think this is one of the best videos on simply making understandable to the concepts. thanks for the video

  • @sachinmore8938
    @sachinmore8938 Рік тому

    Great informative video. Thank you for sharing your knowledge.

  • @tbjapbtu10
    @tbjapbtu10 Рік тому

    Thank u so much brother
    I am new subscriber of u r channel
    After seeing ur videos, i thought that i got some support in Learning of ML
    Ur videos are in very simple English
    Thank you brother

  • @chiragxed
    @chiragxed 4 місяці тому

    23:40
    (80+42)/3 = 122/3 = 40.6

  • @e4skitv
    @e4skitv 2 місяці тому

    Thanks . I just subscribed

  • @anishvarughese9517
    @anishvarughese9517 10 місяців тому

    Explained well

  • @ratheeshmsuresh7368
    @ratheeshmsuresh7368 Рік тому +2

    Brother, Please help to get clarity for the Below Questions,
    First Question :
    check whether The average monthly hours of a employee having 2 years experience is 167.
    What will be the Null and Alternative Hypothesis that I should Consider?

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому

      Can be framed in multiple ways

    • @uditi_
      @uditi_ Рік тому

      null can be “…it is 167” and alternative can be it is not, then you can prove or disprove null hypothesis

  • @CodeWonders_
    @CodeWonders_ Рік тому +2

    At Starting you said wrong because random Forest and decision tree can be used for both

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому

      Not sure which part of the video I said it. Both can be used for classification and regression scenarios.

  • @masoudmirzakhanloo8059
    @masoudmirzakhanloo8059 Рік тому

    awesome 👌

  • @Dropella
    @Dropella 2 роки тому

    this is best I have seen ever

  • @Marklodhi420
    @Marklodhi420 Рік тому

    Exceptional stuff.

  • @Learn_IT_with_Azizul
    @Learn_IT_with_Azizul Рік тому

    Great. please keep up with e-commerce projects in ML practices. Ty

  • @amoghbantwal8179
    @amoghbantwal8179 5 місяців тому

    Hi very nice video. What is the difference between adaboost and gradient boost. As far as I am understanding it, they both have a similar algorithm with residuals that decide how the next model interprets the data

  • @Jordi5720
    @Jordi5720 11 місяців тому

    super useful

  • @satishb9975
    @satishb9975 Рік тому

    Thank you 🎉❤ excellent 👍

  • @Thebeautyoftheworld1111
    @Thebeautyoftheworld1111 Рік тому

    please explain base model in adaBoost . It sounds similar to M1 model. is it different from M1 model. if it is so, what is the difference. Kindly explain. But great explanation.Keep up the good work sir. God bless

  • @DataScienceWallah
    @DataScienceWallah Рік тому

    That's very well explained highly appreciate the content ❤❤❤

  • @kishorrawat8083
    @kishorrawat8083 2 роки тому

    Great lecture.... 👌👍

  • @buttterflygirl
    @buttterflygirl Рік тому

    Need your help understanding a scenario where the OA and kappa coefficient are more or less similar on test and validation datasets when using only one independent variable. Here, the validation dataset meaning completely a new dataset in time and space. Train and Test belong to same time and space. Can you explain to me why this is? I appreciate your help on this. When run with a few more variables, this issue is not showing up.
    For more understanding, Train and Test are from same day satellite image for city A. Validation dataset is from different day satellite image for City B.

  • @khanyijiyane1585
    @khanyijiyane1585 Рік тому

    Really big thank you❤

  • @pankajjoshi8292
    @pankajjoshi8292 Рік тому

    Thank you sir , cannu pls tell how to implement these in python

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому

      HI Pankaj, if you go to playlist section, you will find all the implementation as part of different playlists :)

  • @talentzunlimited1398
    @talentzunlimited1398 Рік тому

    Very helpful !

  • @kanoriopurity4374
    @kanoriopurity4374 Рік тому

    very well detailed great content

  • @robotdream8355
    @robotdream8355 Рік тому

    Really its amazing. Do you have any udemy course?

    • @UnfoldDataScience
      @UnfoldDataScience  Рік тому +1

      Thanks Robert, please check here www.unfolddatascience.com

  • @raghuyadav1406
    @raghuyadav1406 Рік тому

    Hi, do you have implementation examples for all these, i think decision tree, random forest available but others not, also you cover support vector, k nearest etc..

  • @smegala3815
    @smegala3815 2 роки тому +1

    Thank you sir

  • @rajpandim
    @rajpandim Рік тому

    Excellent explanation

  • @rafibasha4145
    @rafibasha4145 2 роки тому +1

    Thanks for the video ,pls cover Naive bayes ,XGboost catboost dbscan hierarchical clustering in one hour video and all stats in 2 to 3 videos also dl nlp imp concepts in 1 hour length video s

  • @pramethicine9328
    @pramethicine9328 Рік тому

    Amazing video will let you know if I pass the interview 😂🙏🏼

  • @Manoj151267
    @Manoj151267 4 місяці тому

    Just scratches the surface - OK for someone who has a working knowledge and needs to brush up. A bit of a lazy presentation - at 28:00 minutes, age & salary can go from +infinity to -infinity!!

  • @omkarbelpatre5
    @omkarbelpatre5 2 роки тому

    Thank you so much sir

  • @thelife1919
    @thelife1919 Рік тому

    Thank you

  • @NurserytoVarsity
    @NurserytoVarsity Рік тому

    You're making education engaging and accessible for everyone. #NurserytoVarsity

  • @naineshkhanjire
    @naineshkhanjire Рік тому +1

    what is beta in logistic regression
    ?