IMPOSSIBLE Trig Integral (Solved With Zeta Function)

Поділитися
Вставка
  • Опубліковано 12 чер 2024
  • Hope everyone enjoyed! I thought this had such nice solution development especially how it changed from trig to sumation so fast. Comment with answers to the challenge and questions or suggestions for new topics, and as always, subscribe to stay updated!!
    ~ Thanks for watching all.
    Thanks again to everyone for all the recent support, I didn't expect any of this so I'm extremely grateful!
    @blackpenredpen I challenge you to the problem at the end...
    #maths #mathematics #integrals #harvard #cambridge #JEE #trigonometry #trig #howto #tutorial #homework #maths #summation #euler #funproblems #proofs #functions #physics #sums #series #limits #zetafunction #whiteboard #math505 #bprp #blackpenredpen #mathsskills #gauss #funproblems #proofs #functions #physics #sums #series #limits #whiteboard #math505

КОМЕНТАРІ • 36

  • @OscgrMaths
    @OscgrMaths  25 днів тому +6

    Don't forget to try the challenge problem at the end and comment your answers!

    • @Richard-ft6zp
      @Richard-ft6zp 25 днів тому

      x^s/(e^x - 1) = x^s * e^-x / (1 - e^-x) to get a/1-r form where r=e^-x and a=x^s*e^-x so is sum_{n=1}^{inf} x^s * e ^{-nx} and the integral becomes the sum {n=1}^{inf} of the integral between 0 and inf of x^s * e ^{-nx} dx . Now these integrals are obviously very close to the gamma function. That's where I cheated and used Wolfram to get an expression in terms of the gamma function. I won't write the answer then because it may be a spoiler for anyone who actually wants to work it out.

    • @Endermanv-ot2if
      @Endermanv-ot2if 24 дні тому +1

      You should mention why you're allowed to swap the integral / summation. It would help people learn.

    • @DihinAmarasigha-up5hf
      @DihinAmarasigha-up5hf 23 дні тому +2

      Gamma (s+1)×zeta (s+1) is the answer for your last integral

    • @OscgrMaths
      @OscgrMaths  23 дні тому +1

      @@DihinAmarasigha-up5hf Perfect!! How did you do it?

    • @Richard-ft6zp
      @Richard-ft6zp 23 дні тому +1

      A video just popped up on my feed which by coincidence is pretty much the identical problem (just starting from the other side) .. Black pen red pen : Zeta function in terms of Gamma function. I prefer starting from the integral though it's really pretty how everything drops out in the summation.

  • @m1che268
    @m1che268 25 днів тому +6

    The summation step is genius. I am loving your videos!

    • @OscgrMaths
      @OscgrMaths  25 днів тому +1

      Thanks so much for the comment!! I loved that step too, it's things like that that make the integral worth doing for me.

  • @Jalina69
    @Jalina69 20 днів тому +2

  • @ZZTopFanatic
    @ZZTopFanatic 22 дні тому +2

    My proof for the challenge problem will use a bit more rigor than some may be used to, namely a bit of introductory special function theory and some measure theory (I'm sure that there are other methods, this is just the first that came to my mind). This is mainly for didactic reasons, but I also wish to lay a firm foundation for the bound on the main result. Another commenter multiplied both the numerator and denominator by e⁻ˣ and used the geometric series to turn the target integral into an integral of sums; however, they stopped short of justifying the interchange of summation and integration and did not give the answer. I will take a similar approach, using a substitution to make the crux of my rigorous argument for interchange more readily apparent. Our goal is to evaluate
    I(s)=∫₀ ᪲xˢ/(eˣ-1)dx. (1)
    We start by making the substitution x=ln(1/u), so we have dx=-1/u du, e⁻ˣ=u, and 1/(eˣ-1)dx=-1/(1-u)du. For the bounds of integration, we obtain u=0 as x approaches infinity and u=1 as x approaches 0. Therefore, we have
    ∫₀ ᪲xˢ/(eˣ-1)dx=∫₀¹lnˢ(1/u)/(1-u)du. (2)
    Since |u|0 (k=0 coincides with an alternate definition for the gamma function, Γ(s)=∫₀¹lnˢ(1/t)dt for Re(s)>-1, and thus still causes no issue); however, it is trivial to show that lim_(u→1⁻) (uᵏlnˢ(1/u))=0 for all k∈ℂ and Re(s)>0. For s along the imaginary axis, we have
    ∫₀¹Σ_(k≥0) |uᵏ(ln(1/u))ᵇⁱ|du=∫₀¹Σ_(k≥0) uᵏ|(ln(1/u))ⁱ|ᵇdu
    =∫₀¹Σ_(k≥0) uᵏ·1ᵇdu=∫₀¹1/(1-u)du. (3.1)
    This diverges, so (3) is not Lebesgue integrable for s with Re(s)=0 (furthermore, (2) diverges). Next, for Re(s)cu for all u∈(0,1). With this, we can write
    ∫₀¹Σ_(k≥0) |uᵏlnˢ(1/u)|du=∫₀¹Σ_(k≥0) uᵏ(ln(1/u))ᴿᵉ⁽ˢ⁾du
    >c∫₀¹Σ_(k≥0) uᵏ⁺¹du=c∫₀¹u/(1-u)du. (3.2)
    This also diverges; combining this with our results from (3.1), (3) is not Lebesgue integrable for any s with Re(s)≤0, and (2) diverges for the same s. Since our integral is well-behaved for all other s and has no other singularities within our domain of (0,1), it follows that it is bounded for any s such that Re(s)>0. Therefore, I(s) is Lebesgue integrable on the product measure of the counting measure on ℕ₀ and the Lebesgue measure on (0,1) if and only if Re(s)>0. By Fubini's theorem, we can freely swap integration and summation, and we have the following:
    I(s)=Σ_(k≥0) ∫₀¹uᵏ(ln(1/u))ˢdu. (4)
    To proceed, we can introduce the upper incomplete gamma function (a generalization of the usual gamma function Γ(s):=∫₀ ᪲tˢ⁻¹e⁻ᵗdt for Re(s)>0), defined as Γ(s,x):=∫ₓ ᪲tˢ⁻¹e⁻ᵗdt for complex s and x with positive real parts. By the fundamental theorem of calculus, ∂/∂x Γ(s,x)=-xˢ⁻¹e⁻ˣ. Examining this derivative and the new form of I(s) in (4), we can deduce
    I(s)=Σ_(k≥0) (k+1)⁻ˢ⁻¹[Γ(s+1,(k+1)ln(1/u))]₀¹
    =Σ_(k≥1) k⁻ˢ⁻¹[Γ(s+1,0)-lim_(v→∞) Γ(s+1,v)], (5)
    where v=k ln(1/u). By the definitions given above, we have Γ(s+1,0)=Γ(s+1) and lim_(v→∞) Γ(s+1,v)=0. Therefore, we can conclude
    ∫₀ ᪲xˢ/(eˣ-1)dx=Γ(s+1)Σ_(k≥1) k⁻ˢ⁻¹=Γ(s+1)ζ(s+1). □
    This result holds for any complex s satisfying Re(s)>0, as shown above.

    • @OscgrMaths
      @OscgrMaths  22 дні тому +1

      Wow!!! That's amazing. Fantastic proof, love the rigour. Thanks so much for sharing this, it's brilliant.

    • @ZZTopFanatic
      @ZZTopFanatic 22 дні тому +1

      @@OscgrMaths Thank you! Loved working on this one. We take a lot of mathematical results for granted, but it's super instructive to look at them and figure out exactly how and why they work.

  • @clementp7648
    @clementp7648 25 днів тому +5

    Bose-Einstein!
    8*pi^6/63 🫡

    • @OscgrMaths
      @OscgrMaths  25 днів тому +2

      Yes! For the challenge you might recognise from the bose einstein equation that it's equal to zeta (s+1) gamma(s+1). Which one did you get an answer of 8pi^6/63 for?

    • @clementp7648
      @clementp7648 24 дні тому +3

      @@OscgrMaths Yes! For the challenge, I used the specific case of the Bose-Einstein integral where s = 5, the integral becomes gamma(6)zeta(6) and I estimated zeta(6) by applying the formula involving Bernoulli numbers, which combined with gamma(6) = 5! = 120, leads to the result of 8pi^6/63!
      Also, thanks a lot for your high-quality videos! Keep up the good work:)

    • @OscgrMaths
      @OscgrMaths  24 дні тому +1

      @@clementp7648 Thats great!! I'm really glad you're enjoying.

  • @falcongjon7815
    @falcongjon7815 18 днів тому +2

    Amazing video,pls make more videos like this and also please do some step integrals please

    • @OscgrMaths
      @OscgrMaths  18 днів тому

      Okay! All of these are great for STEP preparation but I'd recommend you take a look at my most recent video because recursive integrals of that sort come up all the time.

  • @rasmodii
    @rasmodii 24 дні тому +1

    That's a really cool integral ! It reminds me of a Michael Penn video from late April 2023, where the title said something about pi, but there wasn't any discussion about where the pi came from, but the first few steps you introduced are brilliant!

    • @OscgrMaths
      @OscgrMaths  24 дні тому

      Thanks so much! That sounds great, I'll try and find that video and check it out.

  • @nicolascamargo8339
    @nicolascamargo8339 24 дні тому +1

    Wow genial

  • @user-jm6rm2xn3z
    @user-jm6rm2xn3z 24 дні тому +1

    really enjoyable and interesting 🥰🥰keep going 😘

    • @OscgrMaths
      @OscgrMaths  24 дні тому

      Thanks so much!! Really appreciate the comment.

  • @gregoriousmaths266
    @gregoriousmaths266 24 дні тому +1

    Very nice trick with that geometric series there. Funnily enough I actually have a video which answers the challenge called "Bose Integral" back when I had my small whiteboard and my parents were still filming my videos lmao.
    Also 1k subs incoming soon?!

    • @OscgrMaths
      @OscgrMaths  24 дні тому

      Nice!! Bose integral is so good. Hopefully got the 1k coming soon 🤞🤞🤞.

  • @hokagedattebayo7623
    @hokagedattebayo7623 25 днів тому +1

    Cool video :)

  • @Omar_MTH
    @Omar_MTH 25 днів тому +1

    What does a man do when he feels like all the math he learns is for nothing of a use in his life?

    • @OscgrMaths
      @OscgrMaths  25 днів тому +5

      Don't forget... the great thing about maths is that if you can prove it then you've proven something that is always true!! Unlike art or science which are changing and developing, maths may become more and more complex - but something true won't ever be untrue. So I guess you're discovering universal truths... But if that's not enough it's also extremely useful in everything (physics, engineering, economics etc...)

    • @Omar_MTH
      @Omar_MTH 25 днів тому +1

      So it's all about the sensation of happines this gives when it's deeply connected to something usefull

    • @tamasburik9971
      @tamasburik9971 23 дні тому +1

      “The scientist does not study nature because it is useful to do so. He studies it because he takes pleasure in it, and he takes pleasure in it because it is beautiful."
      ― Henri Poincaré, Science and Method