PDE 6 | Transport with decay and nonlinear transport

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 38

  • @ronpearson1912
    @ronpearson1912 6 років тому +10

    This is awesome, I dont know how this has not gone viral.

    • @lbgstzockt8493
      @lbgstzockt8493 6 місяців тому

      Considering that most of the population consider this to be completely arcane knowledge it kind of has gone viral, there are not many 13 year old math videos with this many views.

    • @tigernov_425
      @tigernov_425 6 місяців тому

      @@lbgstzockt8493 Exactly! We are the self-selected biased samples...

  • @umedina98
    @umedina98 2 роки тому

    This videos are pure gold! Crystal clear explanations!!

  • @patrikwilliam-olsson3390
    @patrikwilliam-olsson3390 10 років тому +3

    This is great! It makes me understand at a deeper level so that i can feel confident in my solutions. I will recommend you to my classmates ;)

  • @周梓钦
    @周梓钦 6 років тому +1

    Great video! I am a Chinese university student and now i feel hard studying pde. Sincerely, the textbook we use can not make things easy to understand, thought it is correct and full of strict statement. And my teacher get things done quickly(lol). And thank your clear explanation and vivid picture. Those let me feel better and be confident to get further. excuse for my poor English.thanks

  • @mihaidumitrescu1325
    @mihaidumitrescu1325 Місяць тому

    Hey.
    This is exceptionally clear.
    Thank you!

  • @pzling
    @pzling 12 років тому +1

    Hi, thanks for the reply. The original question was how did du/dt = -au integrate / arrive to
    u(x(t), t) = Ke^-at (understanding this to be a function of t along the characteristic line)?
    Naiively I thought it would have been u = -aut + u0. There's another answer posted along the lines that the derivative of the function e^kt is basically itself (k.e^kt), but I can't see how this relates to du/dt = -au ...

  • @pzling
    @pzling 12 років тому

    Sorry ... and I've just flicked through another post that mentioned separation of variables which explains it. Thanks again.
    And just echoing everyone else, your videos are awesome.

  • @bassoonatic777
    @bassoonatic777 13 років тому +2

    @pdcsv Since u and t are separable, we divide by u and multiply by dt. This gives us du/u = -a*dt. We integrate both sides: Ln |u| = -a*t + constant. Since e is the base of Ln we can say: u = e^(-a*t+constant) = e^( -a*t) * e^(constant) = K * e^(-a*t) where K = e^(constant). Does this help?

    • @haseebahmed487
      @haseebahmed487 3 роки тому

      can you please tell how you computed u = e^(-a*t+constant) = e^( -a*t) * e^(constant) = K * e^(-a*t)?

  • @djrodgerspryor
    @djrodgerspryor 13 років тому

    @pdcsv the only function which is equal (up to some constant factor) to its own derivative is the exponential function e^kt
    d(e^kt)/dt = k*e^kt

  • @zany963
    @zany963 13 років тому +1

    Hi! Your ideos are amazing. they present an intuitive picture of the concepts which I'd earlier failed to get even after taking a course in PDEs. You present idea in a simple and clear way. It will be nice if you could do videos on non-lineae equations like Burger's equation discussing shock and rarefaction. Thanks!

  • @alihariri6883
    @alihariri6883 9 років тому +3

    Great video ! Could you please recommend a book to practice ? Perhaps one that has a solution manual ?

  • @sudharakafernando4391
    @sudharakafernando4391 3 роки тому

    Great explanations sir..Your videos made me understand PDE 🔥❤️

  • @victorfonseca4262
    @victorfonseca4262 3 роки тому

    I appreciate if you could help understand why the shape of the wave changes with time in the non-linear case if du/dt=0?

  • @thomasyang8983
    @thomasyang8983 4 роки тому

    I guess matters during transportation have energy loss,does that also fit in this decay equation?

  • @KillianDefaoite
    @KillianDefaoite 2 роки тому

    Great video, though I must comment that the last equation is not the nonlinear transport equation, nor is it even nonlinear. The generalized nonlinear transport equation is du/dt+c(u) du/dx=0. Here c(u) is the wave speed, which is allowed to change with the value of u.

  • @wenboli3948
    @wenboli3948 5 років тому

    Thank you. Your explanation is so clear!

  • @ngc2440
    @ngc2440 12 років тому

    will u explain where the u(x,t) = f(x0) exp(-at) along the characteristic curve come from?

  • @dannyboy12357
    @dannyboy12357 12 років тому

    how would you solve the example in 7:30 without the initial values ie. just u_t+3u_x=-u?

  • @livpoolmad
    @livpoolmad 11 років тому

    I applied this solution technique to an engineering problem governed by that PDE. worked out great.

  • @fangyangshen7759
    @fangyangshen7759 12 років тому

    shouldn't the curve of e^t be lower convex?

  • @pzling
    @pzling 12 років тому

    Thanks! Will do

  • @rui1109
    @rui1109 5 років тому

    Trying to learn all of this before one week my final starts...

  • @fangyangshen7759
    @fangyangshen7759 12 років тому

    Silly me! Thanks for the wonderful videos!

  • @kingkingston5187
    @kingkingston5187 3 роки тому

    Ur good so good

  • @camilovargas0000
    @camilovargas0000 11 років тому

    you rock!

  • @omardarwish4241
    @omardarwish4241 12 років тому

    when we established that (1,c) dot (Ux,Ut) is the transport equation we disregarded that fact that (1,c) is not a unit vector because the expression was equal to zero, now it doesn't, it equals -Au so how is this still correct?

    • @Mateusbac
      @Mateusbac 8 років тому

      He explained that on his later videos.

  • @AkramAlSabbagh
    @AkramAlSabbagh 11 років тому

    first of all, I'd like to thank u about these wonderful videos.
    and I'd like to ask u if u please could help me to solve:
    u_x(x(t),y(t),t) + u_y(x(t),y(t),t) + (f(x(t),y(t),t)+g(t))*u=0
    using the method of characteristics
    I've got:
    u(x(t),y(t),t)=u_0 * exp[-(int (f(x(t),y(t),t)+g(t)))]
    could u please confirm if its right or not??
    many thanks and best regards

  • @ngc2440
    @ngc2440 12 років тому

    please ignore my comment i just saw the answer !

  • @Postermaestro
    @Postermaestro 7 років тому

    !!

  • @rutger5000
    @rutger5000 10 років тому

    ,