An Interesting Algebra Challenge | Give It A Try!

Поділитися
Вставка
  • Опубліковано 25 січ 2025

КОМЕНТАРІ • 7

  • @RashmiRay-c1y
    @RashmiRay-c1y 14 днів тому

    Note that 1/x=√11 +√5. So, 3x+1/(2x)=√11. Let 3x=a and 1/(2x)=b. Then, a+b=√11 and ab=3/2 and E=(a+b)^5-5ab(a^3+b^3)-10 a^2b^2(a+b). But a^3+b^3=(a+b)[(a+b)2-3ab] = (13/2)√11. So, E = √11[121-195/4 -45/2] = (199/4)√11.

  • @Quest3669
    @Quest3669 14 днів тому

    3x+(1/2x)= √11 hence
    ? = (199√11)/ 4= 165 approx.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 14 днів тому

    (11)^2 ➖ (5)^2/(6)={121 ➖ 25}/36=06/362.24 2.2^12 1.2^61.2^2^3 1.1^2^3 (x ➖ 3x+2). {243x^5+243x^5 ➖}{1x+1x ➖ }/{32x^5+32x^5 ➖ }={486x^102x^2}/64x^10=488x^12/64x^10=802x^2 10^82 10^2^42x^2.10^2^21x^2 10^2^3^7x^2 2^5^1^3^3^4x^2 1^1^1^3^2^2x^2 3^1^1x^2 3x^2 (x ➖ 3x+2).

  • @gregevgeni1864
    @gregevgeni1864 14 днів тому

    K = (199√11)/4
    x = (√11-√5)/6 = 1/(√11+√5) =>
    (3x) + 1/(2x) = 3/(√11+√5) +
    (√11+√5)/2=(√11-√5)/2+(√11+√5)/2
    => (3x)+1/(2x)= √11.
    Now
    (3x)³+(1/2x)³=(3x+1/2x)³-3•3x•1/2x•(3x+1/2x) = (√11)³-(9/2)•√11= 13√11/2 (1)
    (3x)²+(1/2x)²= (3x+1/2x)²-2•3x•1/2x=
    = (√11)²-3=8 (2).
    (1)•(2) =>
    {(3x)³+(1/2x)³}•{(3x)²+(1/2x)²}= 4•13√11 =>
    243x⁵ + 1/(32x⁵) + (9/4)•(3x+1/2x)=52√11 =>
    243x⁵+1/(32x⁵)= 52√11-(9/4)√11=
    K = 199√11/4

  • @adribber
    @adribber 14 днів тому

    x = (√11 - √5)/6
    243x⁵ + 1/32x⁵ = ?
    6x = √11 - √5
    Let, a = 3x , b = 2x
    a = (√11 - √5)/2 , b = (√11 - √5)/3
    a + 1/b = (√11 - √5)/2 + 1/(√11 - √5)/3
    = (√11 - √5)/2 + 3/(√11 - √5)
    = (√11 - √5)/2 + 3(√11 + √5)/(√11 - √5)(√11 + √5)
    = 3(√11 - √5)/6 + 3(√11 + √5)/6
    = √11
    a/b = (√11 - √5)/2 / (√11 - √5)/3
    = 3(√11 - √5)/2(√11 - √5)
    = 3/2
    Let, k = 243x⁵ + 1/32x⁵
    k = (3x)⁵ + 1/(2x)⁵
    = a⁵ + 1/b⁵
    = (a + 1/b)(a⁴ - a³/b + a²/b² - a/b³ + 1/b⁴)
    = (a + 1/b)(a⁴ + 1/b⁴ - a³/b - a/b³ + a²/b²)
    = (a + 1/b){a⁴ + 1/b⁴ - a/b(a² + 1/b²) + a²/b²}
    = (a + 1/b)[{(a² + 1/b²)² - 2a²/b²} - a/b{(a + 1/b)² - 2a/b} + a²/b²}]
    = (a + 1/b)[{(a + 1/b)² - 2a/b}² - a/b(a + 1/b)² + a²/b²]
    = (a + 1/b)[(a + 1/b)⁴ - 5a/b(a + 1/b)² + 5a²/b²]
    = √11(√11⁴ - 5*(3/2)√11² + 5*9/4)
    = √11(484 - 330 + 45)/4
    = 199√11/4