Powers of Matrices and Markov Matrices

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 28

  • @georgesadler7830
    @georgesadler7830 3 роки тому +4

    Dr. Strang really wants each student to understand linear algebra in all phases from top to bottom and from left to right. After the lectures are over he wants you to retain this information forever. These lectures really tell you the student the passion DR. Strang has for teaching.

  • @AmandaSMaria
    @AmandaSMaria 7 років тому +28

    the best teacher in the world!! Thank you professor Strang!!

  • @yujing7544
    @yujing7544 7 років тому +8

    “the best teacher in the world!! Thank you professor Strang!! ”, the same words from my heart.

  • @ffvgdsg5584
    @ffvgdsg5584 5 років тому +4

    as a student of international university, which is not in US i've witnessed that most professors are using prof Strang's lectures as a pattern and the book particularly we use is intro to linear algebra G.Strang.
    That is another evidence of that he is currently the best professor in the world

  • @Jeshtroy
    @Jeshtroy 7 років тому +23

    He teaches in a way that a 3rd grader could understand!

  • @dengdengkenya
    @dengdengkenya 5 років тому +1

    Fantastic! I'm really enlightened by this lecture, though I can't say Professor Strang always gave such a clear explanation on each linear algebra subject.

  • @paulchan6818
    @paulchan6818 Рік тому

    A good lecturer that connects to his students.

  • @edwardhartz1029
    @edwardhartz1029 4 роки тому

    That was superb, I love how thorough you are. Now I understand why pii^(n)=a*(lambda1)^n+b*(lambda2)^n+...
    (For some a,b,c.. which can be determined using simultaneous equations.)

  • @jimnewton4534
    @jimnewton4534 3 роки тому +2

    To compute the nth power of a square matrix A requires at most log(n) matrix multiplications, i.e. n^3 log n. (assuming cubic time matrix multiplication) Why? because if n is even I can simply square A^{n/2}, and if n is odd I can multiply A by A^{n-1}. If I have the Eigen decomposition then raising to the nth power is n^3 (just compute the powers along the diagonal of the diagonal matrix) and multiple on left and right by V and V^{-1}.

  • @arvindvishwakarma4257
    @arvindvishwakarma4257 6 років тому +1

    Best teacher in the world

  • @tgx3529
    @tgx3529 3 роки тому

    Time 12:24, is it realy Markov matrix from Markov proces?? 0,8+0,31 and 0,2+0,71

  • @jonahansen
    @jonahansen 6 років тому +2

    What a great teacher!

  • @saeida.alghamdi1671
    @saeida.alghamdi1671 4 роки тому

    Quite Interesting implication of the presentation!

  • @dengdengkenya
    @dengdengkenya 5 років тому +1

    What if all eigenvalues were less than one in the case of Markov Matrix example? Or is there any theorem that proves at least one lambda is greater than one here?

    • @jordanhansen6649
      @jordanhansen6649 5 років тому

      There is always an Eigen value that equals 1 in the case of a Markov Matrix

  • @jesusglez09
    @jesusglez09 4 роки тому

    i love this Thank you Prof. Thank you MIT

  • @devrimturker
    @devrimturker 4 роки тому

    Excellent explanations

  • @sauravnagar1745
    @sauravnagar1745 6 років тому +1

    How does he write the values of eigenvectors so easily? I mean he doesn't even perform any mental calculations. Does anyone has any clue?

  • @engineershmily
    @engineershmily 6 років тому

    please anyone can guide me how if U(k+1)=AU(K) then U(k)=A^k U(0) at time 3:25

    • @jancirani2748
      @jancirani2748 6 років тому +1

      Start with u(1).
      1. U(1)= A.U(0). --> eq.1
      2. U(2)= A.U(1) = A.A.U(0) (from eq.1)
      U(2)= A^2.U(0)
      Proceeding like this,
      It gives
      U(k) = A^k.U(0).
      Hope, it's clear

    • @shrinivasiyengar5799
      @shrinivasiyengar5799 6 років тому

      @@jancirani2748 can this be said to be similar to how in the continuous time system X' = AX gives a solution X(t) = (e^At)X(0)

    • @WolfixDwell
      @WolfixDwell 4 роки тому

      @@shrinivasiyengar5799 Hi, prolly little bit late but: Solution to differential equation as your system dynamic is equal to x(t)= (e^At)x(0), so this solution coresponds to differential equation. And solving the e^At corresponds to e^\lambda_1 t + e^\lambda_2 t ... bcs of equality of characteristic polynomial equation

  • @checkout8352
    @checkout8352 5 років тому

    Thank you vey much

  • @wuoshiwzm001
    @wuoshiwzm001 7 років тому +3

    professor Strang is getting old.... but always giant to me..

    • @videofountain
      @videofountain 7 років тому

      Everyone is getting older or the other alternative. Including you.

  • @yohanshailu5620
    @yohanshailu5620 3 роки тому

    make it 1.75x

  • @justinkim7743
    @justinkim7743 4 роки тому

    Thank you so much