Detecting Power Laws in Real-world Data | w/ Python Code

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 9

  • @ShawhinTalebi
    @ShawhinTalebi  Рік тому +3

    📹Series Intro: ua-cam.com/video/Wcqt49dXtm8/v-deo.html
    📰Read more: medium.com/towards-data-science/detecting-power-laws-in-real-world-data-with-python-b464190fade6?sk=07960e2c880b7f6f5ac577e6beb843a3
    💻GitHub Repo: github.com/ShawhinT/UA-cam-Blog/tree/main/power-laws/2-detecting-powerlaws

  • @AnimeshSharma1977
    @AnimeshSharma1977 Рік тому

    very interesting as usual 👍 wondering how does one handle missing values in such cases?

    • @ShawhinTalebi
      @ShawhinTalebi  Рік тому +1

      Good question. It depends on on what a "missing value" is here. Is it missing because of an issue in the data collection process or because the event is so rare. In the former case, you'd need to correct the issue on a case by case basis. In the latter case, you'd need to collect more data.
      Hope that helps!

  • @glenbrown9963
    @glenbrown9963 8 місяців тому

    Hi Shaw, just trying to get my head around PL distributions, let alone Python. However a question re Chapt 6 Example Code: Fitting PL to SMD, viz Medium Followers. Wouldn't Exponential be a better fit given R>3.9/p>.7, against lognorm (ect) R>-12.7/p>.007

    • @ShawhinTalebi
      @ShawhinTalebi  8 місяців тому

      Good question! In this context, smaller p means better fit.

  • @emilyr6880
    @emilyr6880 7 місяців тому

    this is great, thank you sm

  • @fazelamirvahedi9911
    @fazelamirvahedi9911 Рік тому +1

    It was fascinating 👍But the sound was a bit low.

    • @ShawhinTalebi
      @ShawhinTalebi  Рік тому +1

      Thanks 😁 I’ll improve that on the next one