Minimum Phase and All Pass Systems

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 10

  • @allsignalprocessing
    @allsignalprocessing  11 років тому +1

    You are correct. Thanks for being so careful and letting me know about the error. I've annotated the video to reflect the correction.

  • @allsignalprocessing
    @allsignalprocessing  11 років тому

    It is the same procedure, as explained starting at 6:45. Those imaginary roots outside the unit circle are reflected back inside the circle. Say they are at +- j1.1, then they get reflected to -+ j (1/1.1) in step 2 as poles in H_{ap}. Then they get added as zeros (at -+j(1/1.1) ) to H_{min}

  • @Ujjwaldev6444
    @Ujjwaldev6444 7 років тому

    Namaste from India🙏🙏
    thnks fr this lecture, its awesme nd easy to understand the concepts of all pass nd min phase system..

  • @atavanH
    @atavanH 11 років тому +1

    Thanks Barry for the reply, you made me less worried for my exam haha.

  • @atavanH
    @atavanH 11 років тому +3

    I did the last example with you, and I don't understand how you managed to get -0.81 in the Hmin section. If you take out the "beta" from the zeros in Hap you get 1/0.9, not 0.9. So shouldn't Hmin be -1/0.81 ??

  • @AdityaPrasad007
    @AdityaPrasad007 5 років тому

    The corrected link seems to be broken, the annotation leads nowhere.

  • @scarlettjane8796
    @scarlettjane8796 6 років тому

    Is it true that single zero and pole are not mirror image, but the pair of zeros and poles are mirror image. It is because pole=r*e^(jw) and zero=1/r*e^(-jw). The angle of zero and pole are actually conjugate.

  • @misssarahosseini
    @misssarahosseini 11 років тому

    Great , thanks

  • @vitchuu1988
    @vitchuu1988 10 років тому

    what type of controller can be used for non minimum phase s/m?

    • @allsignalprocessing
      @allsignalprocessing  10 років тому

      Good question. I'm not a control theory experts, so I don't have the answer for you at this point in time. Someone else out there might know though.