Elbow Method | Silhouette Coefficient Method in K Means Clustering Solved Example by Mahesh Huddar

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ • 25

  • @monikaarya7434
    @monikaarya7434 Рік тому +34

    K should be 5 not 3.

    • @MaheshHuddar
      @MaheshHuddar  Рік тому +7

      That was a typo
      K should be 5 for Elbow method

    • @51_sajalgupta84
      @51_sajalgupta84 10 місяців тому

      send notes

    • @WellPlayedGamingYT
      @WellPlayedGamingYT 7 місяців тому

      @@51_sajalgupta84 bro why you need nudes???

    • @daffadistrict3
      @daffadistrict3 Місяць тому +1

      @@51_sajalgupta84 have you never been taught manner by your parents?

  • @shreyashinde3212
    @shreyashinde3212 7 місяців тому +2

    this is the best video i've seen on elbow and silhouette method !! Thank you so much !!

    • @MaheshHuddar
      @MaheshHuddar  7 місяців тому

      Welcome
      Do like share and subscribe

  • @AmanSingh-sx1tz
    @AmanSingh-sx1tz Місяць тому

    Thankyou Sirr!

  • @aiml66_bangerashashankchan81
    @aiml66_bangerashashankchan81 Рік тому +1

    thank you sir this helped me a lot!

  • @arpitakar3384
    @arpitakar3384 2 місяці тому +1

    The legend pic in black chasma..
    Thanks

  • @aashishshah1668
    @aashishshah1668 3 місяці тому +1

    very helpful

  • @RajeshAwate-r9x
    @RajeshAwate-r9x Рік тому +1

    Both the methods needs to form clusters right? So does we have to use k Means Algorithm to form clusters for both the Elbow and Shillote methods?

    • @adaobiokafor9546
      @adaobiokafor9546 11 місяців тому

      yes. you can use the elbow and silhouette methods for any partitioning algorithm that requires you to provide the value of k first eg in k means, k-medoids clustering etc. So assuming you have data, you can run it with let's say k = 10 or 20 first, applying the methods to choose the optimal number for k. With this optimal k value, say k = 3, you would then redo the clustering to get your final clustered data (without applying the methods).

  • @romantsarev1145
    @romantsarev1145 Рік тому +3

    Why did you chose the point X=5 (4:30)? Why not 3 or 7? Besides, as far as I understand you made a decision visually, but what if we calculate it on PC (with no visualisation)?

  • @romantsarev1145
    @romantsarev1145 Рік тому +2

    I'm a bit confused.To apply the k-means algorithm, the number of clusters k must be determined. This can be accomplished through the elbow method or the silhouette method. However, each of these methods involves enumerating the values of k = 1, 2, 3,..... (

    • @adaobiokafor9546
      @adaobiokafor9546 11 місяців тому

      yes. you can use the elbow and silhouette methods for any partitioning algorithm that requires you to provide the value of k first eg in k means, k-medoids clustering etc. So assuming you have data, you can run it with let's say k = 10 or 20 first, applying the methods to choose the optimal number for k. With this optimal k value, say k = 3, you would then redo the clustering to get your final clustered data (without applying the methods). A computer would normally do all k's at once, you don't need to enumerate each k.

  • @NataliaRevenga
    @NataliaRevenga 2 місяці тому +1

    Why does the elbow method tell us that 5 is the optimum number of clusters, while the silhouette says 3? Why not 3 for the inertia as well, if there is also a bend at point 3?

  • @vijayjayaraman5990
    @vijayjayaraman5990 7 місяців тому

    How many centroids should we choose for each value of k

    • @MaheshHuddar
      @MaheshHuddar  7 місяців тому

      1 centroid per cluster
      Fo example: if you want 5 clusters hgen you need to select 5 centroids

  • @sherz1937
    @sherz1937 Місяць тому +1

    watch out: the b(i) coefficient presents a misleading definition. It is the average distance between the point i and the points in the NEAREST cluster.

  • @ugursesiz1550
    @ugursesiz1550 Рік тому

    thanks