Real Analysis | Cauchy Criterion for Series

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ •

  • @nicholasroberts2933
    @nicholasroberts2933 4 роки тому +21

    Michael, at 12:50, did you mean to say “contrapositive” instead of “converse”?

  • @MrCentrax
    @MrCentrax 4 роки тому +1

    Found your chanell when I was studying some basic number theory and I have to say your's one of the best math channels on UA-cam. Great work

  • @adrianamor8472
    @adrianamor8472 4 роки тому +11

    The theorem statement is just wrong. If you are considering both m,n >= N then you should have |a_n+1 + ... + a_m| < eps.
    The alternative version is to consider n >= N and p >= 1, then you have |a_n+1 + ... + a_n+p| < eps.
    This statement is mixing the two above, which is just not Cauchy criterion (perhaps still holds but i'd consider it wrong).
    Also, Just take p = 1 for the corollary proof, taking n = m + 1 doesn't give you a_n, it gives you a_m+1 + ... + a_(2m+1).
    Taking p=1 you get |a_n+1| < eps which is not |a_n| but you could just pick K = N+1 and then for all n >= K => |a_n| < eps

  • @thesecondderivative8967
    @thesecondderivative8967 Рік тому +2

    14:13 I think the sequence of terms in the absolute value should end in n and not m+n. That way, it would collapse.

  • @EmilianoPM6754
    @EmilianoPM6754 4 роки тому +7

    There is an error in the theorem, as n does not necessarily have to be greater than N given the form of the theorem that is written. It would be fine if the sum inside the absolute values ended in a_n and not a_(n+m). In the form given we should only ask for n>=1.

  • @mohameddaoud4885
    @mohameddaoud4885 4 роки тому +6

    14:15 why would it collapse to |a_n|, I believe it should be |a_n, a_n+1, a_n+2, ...... a_2n-1|? Hope to clear my confusion. Thank you for everything

    • @stefanschroder4694
      @stefanschroder4694 4 роки тому +2

      You are absolutely right :)

    • @davidmoss9926
      @davidmoss9926 4 роки тому +4

      Referencing Abbott I believe the finite sum should be a_m+1 +...+a_n rather than a_m+1 +...+ a_m+n

    • @thesecondderivative8967
      @thesecondderivative8967 Рік тому

      ​@@davidmoss9926 I believe so as well.

  • @thenewest1
    @thenewest1 4 роки тому +4

    Hey Michael, big fan of the RA series, was wondering how far you were planning on going with this series e.g. just a few videos or maybe following a textbook. I'm Preparing for the math GRE and brushing up on RA with your videos is a godsend.

    • @MichaelPennMath
      @MichaelPennMath  4 роки тому +8

      I am making these videos to support a full semester course in Real Analysis that I am teaching this Fall.

    • @BinodTharu-co4by
      @BinodTharu-co4by 4 роки тому +1

      Binod

  • @asht750
    @asht750 3 роки тому

    Can you also make more videos on advanced topics in Real Analysis such as the Contraction Principle, and so forth?

  • @thenewdimension9832
    @thenewdimension9832 2 роки тому

    Best explanation!

  • @jimallysonnevado3973
    @jimallysonnevado3973 4 роки тому +3

    Why if we set n=m+1, the sum collapses shouldn’t it be |(a_m+1 +a_m+2+.....a_2m+1)|?

    • @jimallysonnevado3973
      @jimallysonnevado3973 4 роки тому +10

      There is a mistake in the index of the stated theorem, it should be |a_m+1+.....+a_n| not |a_m+1....+a_m+n|.

  • @victorserras
    @victorserras 3 роки тому

    Incredible stuff! Thanks.

  • @zakthayer9315
    @zakthayer9315 Рік тому

    12:20, appreciate the effort 😂

  • @youssefbouhtouch6050
    @youssefbouhtouch6050 4 роки тому

    I have a question :
    if we have two polynomials p and q in Q[x]
    and there exists a complex number z such that :
    p(z)=q(z)=0 (z is a root fo each of p and q)
    can we say that gcd(p,q) in Q[x] is not a constant and please why

  • @JB-ym4up
    @JB-ym4up 4 роки тому +2

    You say its koshi but can you parve it?

  • @________6295
    @________6295 4 роки тому

    14:37

  • @BinodTharu-co4by
    @BinodTharu-co4by 4 роки тому +1

    Binod

  • @goodplacetostop2973
    @goodplacetostop2973 4 роки тому +8

    14:36