Algebraic Topology 2: Introduction to Fundamental Group

Поділитися
Вставка
  • Опубліковано 19 лис 2024
  • Playlist: • Algebraic Topology
    We give a quick review of group theory then discuss homotopy of paths building up to the definition of the fundamental group.
    Presented by Anthony Bosman, PhD.
    Learn more about math at Andrews University: www.andrews.ed...
    In this course we are following Hatcher, Algebraic Topology: pi.math.cornel...

КОМЕНТАРІ • 39

  • @gustavogonzalez7707
    @gustavogonzalez7707 Рік тому +15

    Wonderful lecture.

  • @-minushyphen1two379
    @-minushyphen1two379 Рік тому +19

    00:00 Review of groups, homomorphisms, and isomorphisms
    18:45 Return to topology: path homotopy
    22:55 Why must two paths with the same endpoints in R2 be homotopic?
    30:20 Homotopy is an equivalence relation
    42:15 Different equivalence classes of paths in the annulus
    45:20 Loops
    58:00 definition of the fundamental group

  • @rolandscherer1618
    @rolandscherer1618 Рік тому +9

    The topic was didactically perfectly motivated. Thank you very much!

  • @joshuad.furumele365
    @joshuad.furumele365 10 місяців тому +3

    Another excellent lecture! Thanks

  • @parthanpti
    @parthanpti 4 місяці тому +1

    Great..... lecture....
    Its a key to entering in the modern mathematics

  • @hanselpedia
    @hanselpedia 6 місяців тому

    Thanks, lots of stuff explained in a intuitive way

  • @Spacexioms
    @Spacexioms 3 місяці тому +1

    I just don’t get the example at 43:01. Wouldn’t f & g be homotopic to each other since they have the same start & end point?

  • @tahacasablanca5276
    @tahacasablanca5276 4 місяці тому

    Nice suit and nice lecture! Thanks.

  • @kirillshakirov9453
    @kirillshakirov9453 2 місяці тому

    Great video

  • @ompatel9017
    @ompatel9017 Рік тому +5

    Gem

  • @richardchapman1592
    @richardchapman1592 8 місяців тому

    Can you make a loop that approaches infinity or indeed any surface that approaches the infinities of it's orthogonality plus one?

  • @imthebestmathematician7477
    @imthebestmathematician7477 Рік тому +2

    Thank you

  • @richardchapman1592
    @richardchapman1592 Місяць тому

    Can see this pictorially using a 1dim path on a 2dim surface in 3dim. In larger dimensions not sure how an extrapolation is made using an analogy of an n dimensions path on a pdim brane in an sdim space.

  • @fslakoh
    @fslakoh 5 місяців тому +1

    Great suit. Big effort on the outfit. Well done

  • @paulwary
    @paulwary Рік тому

    At 24:30, the explicit linear interpolation formula is given for one possible homotopy, to show that there is always a homotopy of paths in R2, correct? The language suggest that this is THE homotopy (ie the one and only)

    • @enpeacemusic192
      @enpeacemusic192 6 місяців тому

      I think so, yeah, homotopy of paths is ány continuous deformation of paths afaik

  • @xanderlewis
    @xanderlewis 8 місяців тому

    45:00 “When I use a word, it means just what I choose it to mean - neither more nor less.” - Humpty Dumpty. You can tell Lewis Carroll was a mathematician.

  • @richardchapman1592
    @richardchapman1592 8 місяців тому +1

    In attempting to use topology in sociological circumstances, are therrighte different winding numbers for thought streams of what are commonly termed the

    • @John-js2uj
      @John-js2uj 7 місяців тому +1

      What on earth are you trying to say?

    • @richardchapman1592
      @richardchapman1592 7 місяців тому

      @@John-js2uj have an egoistic humility that my partial understanding can use these precise mathematical concepts in the imprecise social sciences. Worries me tho that mathematics applied to human circumstance can lead to a kind of cyber fascism if AI is taken too far too fast.

    • @John-js2uj
      @John-js2uj 7 місяців тому

      @@richardchapman1592 You’ve got to be a bot

    • @richardchapman1592
      @richardchapman1592 7 місяців тому

      @@John-js2uj so trained in logic and emotionally damaged couldn't refute that unless you saw me in flesh and blood.

    • @richardchapman1592
      @richardchapman1592 7 місяців тому

      @@John-js2uj would ask of you an email address so I could send you a photo that you could possibly accept as not a fraud, but then there are Trojan horses on mails to worry about.

  • @bengrange
    @bengrange 5 місяців тому

    at 39:00, when you said f and g are homotopy equivalent, did you mean to say homotopic?

    • @bengrange
      @bengrange 5 місяців тому

      and at 53:16, you meant "equivalence classes" not relations. Thank you for the great lectures!!

  • @unixux
    @unixux 3 місяці тому

    That’s some of the best looking annulus in NA

  • @SphereofTime
    @SphereofTime 7 місяців тому

    17:11

  • @SphereofTime
    @SphereofTime 7 місяців тому

    6:10

  • @hyornina
    @hyornina Рік тому +3

    39:59 😂😂

    • @joshuad.furumele365
      @joshuad.furumele365 10 місяців тому

      I see you, and i raise you 29:03

    • @turtle926
      @turtle926 8 місяців тому

      I raise further with 44:44 😎

  • @wipetywipe
    @wipetywipe 11 місяців тому

    Great lecture. Camera work needs improvement.

  • @SphereofTime
    @SphereofTime 7 місяців тому

    18:29 surjection=onto= heat everything to image. Onetoone. Man to one. Bikection

  • @richardchapman1592
    @richardchapman1592 8 місяців тому

    Last comment on my editor needed a vector from the centre of a word to the end.

    • @richardchapman1592
      @richardchapman1592 3 місяці тому

      Watching the video again, it is not clear if the lines between s on f(t) are straight in R2. Some explanation of their continuity as s and t vary would help especially in spaces other than R2.

  • @randomcandy1000
    @randomcandy1000 6 місяців тому

    isnt S^1 x [0,1] the cylinder?

    • @DogeMcShiba
      @DogeMcShiba 5 місяців тому +3

      Yes, the annulus is homeomorphic to the surface of a cylinder.