Phase Portrait for Double Well Potential

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 27

  • @Eigensteve
    @Eigensteve  2 місяці тому +1

    Additional Code by Eugenio Sainz Ortiz: github.com/GenioSainz/Dynamical-Systems

  • @cziffras9114
    @cziffras9114 8 місяців тому +2

    Never seen phase portraits so well explained

  • @ElMalikHydaspes
    @ElMalikHydaspes 7 місяців тому

    Phase Portraits can be gnarly; Dr. Brunton's video does an excellent point of explaining them in detail

  • @hamedfarahani4281
    @hamedfarahani4281 Рік тому

    Thank you for your enthusiasm! I wanted to highlight one point: I find that locating fixed points becomes more straightforward and easier to understand when we set the derivative of the potential to zero, essentially making the slope zero on the potential diagram. Thank you.

  • @charlottejanssen2204
    @charlottejanssen2204 Рік тому +1

    Thanks for the enthousiasm :) I have an exam on topics like this and found it quite difficult and boring before, but since you explain it so well I start to enjoy it too.

  • @kambizmerati1119
    @kambizmerati1119 3 місяці тому +1

    Amazing stuff!

  • @tinchiang892
    @tinchiang892 2 роки тому +19

    So where can I get a phase space T-shirt?

    •  2 роки тому

      Yeah

    • @seslocrit9365
      @seslocrit9365 2 роки тому +1

      I made one and ordered it

  •  2 роки тому +4

    Nice stuff. Thanks!

  • @SSNewberry
    @SSNewberry 6 місяців тому

    Must put in the dot... need to put in the dot... Thank you for your cooperation.

  • @__--JY-Moe--__
    @__--JY-Moe--__ 2 роки тому +1

    4th order polynomial ! plus color markers! nice!

  • @carloshenao18
    @carloshenao18 2 роки тому +1

    Awesome. Great content.

  • @dmitrykhorkin
    @dmitrykhorkin 2 роки тому

    Nice stuff! Great explanation

  • @RoyDrax
    @RoyDrax Рік тому

    incredibly excellent !

  • @j-conz6906
    @j-conz6906 2 роки тому +2

    Seriously tho... where can we get a shirt?

  • @goodfty
    @goodfty 2 роки тому +1

    Just in time for Halloween hahaha

  • @jafetriosduran
    @jafetriosduran 2 роки тому

    Love this lectures

  • @danielsiemmeister5286
    @danielsiemmeister5286 Рік тому

    Great Explanation and drawings! :) I have one questions about linearization and fixed points: Why don't we linarize about other points than the fixed points? Theoretically it should, because I see no problem with the mathematical machinery of linearization. Am I missing something?

    • @Miguel_Noether
      @Miguel_Noether Рік тому

      If you don't start in a fixed point (generally it can be a periodic orbit or invariant manifold) then your perturbation and the point where you're trying to linearize will change in time due to the flow of your system of differential equations. In other words, you need a fixed reference (relative to your flow) frame to analyze how your perturbation will change, and that change is just a linear systems of differential equations for your perturbation

    • @danieljulian4676
      @danieljulian4676 10 місяців тому

      Only near the fixed points is it possible to linearize, by shifting the (linearized) expansion point in the coordinates if not at the origin. Analogous to Taylor vs Maclaurin series expansions.

  • @lioneloddo
    @lioneloddo 2 роки тому +1

    Mathematical induction is something very natural for us. For double well potential, the phase portrait is like this. So for the triple well potential, it's easy to imagine the phase portrait, ans so on.
    But nature really hates this approach. Nature will agree to "think like this" till around 10 quasi-periodic orbits, but no more. Then, nature gonna change its strategy. And its new strategy is so amazing, so beautiful, one of the most beautiful thing in the world : the self-similarity...

  • @СашаПанов-э4с
    @СашаПанов-э4с 2 роки тому

    Hello, your lectures are very interesting! Thanks for these. But you can not use a linearization method for studying nonlinear dynamics even locally, if your linearization is not hyperbolic (if eigenvalues belong to imaginary axis, like in this video and not only).

    • @Miguel_Noether
      @Miguel_Noether Рік тому

      You don't know a priori if the fixed point is going to be hyperbolic, you linearize the system locally around a fixed point to determine that

  • @bonbonpony
    @bonbonpony Рік тому

    12:02 This picture must have been looking funny on your wife's T-shirt :J

  • @edzion6433
    @edzion6433 2 роки тому +1

    Spooky Spooky