Complete Derivation: Universal Property of the Tensor Product

Поділитися
Вставка
  • Опубліковано 27 вер 2024

КОМЕНТАРІ • 22

  • @paoloemankin4486
    @paoloemankin4486 Рік тому +8

    I've always said that things thought to be difficult are very often simply poorly explained. This video is a confirmation: it makes things considered difficult easy. Thank you.

  • @Happy_Abe
    @Happy_Abe 7 місяців тому +5

    This has got to be the best video on tensor products on UA-cam. I hope you make more videos on this stuff!

  • @TD-ev7uj
    @TD-ev7uj 2 місяці тому

    This is fire thank you. Perfectly rigorous with great examples.

  • @tomlopfer
    @tomlopfer Рік тому +2

    Very well done! I really liked how you discussed all details 100% concisely.

  • @marale72uk
    @marale72uk Місяць тому

    Excellent! Thanks a lot!

  • @SanuIITM15
    @SanuIITM15 2 місяці тому

    Fantastic explanation ❤️

  • @kdr1895
    @kdr1895 Рік тому +1

    Always as clear as crystal🎉🎉🎉

  • @zhuolovesmath7483
    @zhuolovesmath7483 Рік тому +1

    Great skills of explaining!

  • @StratosFair
    @StratosFair Рік тому

    Thank you for this enlightening lecture

  • @tmjz7327
    @tmjz7327 Рік тому +1

    amazing video.

  • @davidescobar7726
    @davidescobar7726 Рік тому +1

    Great video! ❤

  • @madmath1971
    @madmath1971 Рік тому

    Consider the vector space V=RxR and a bilinear map f from V to R. Fix the standard basis e_i so that f is represented by the matrix A with element a_ij =f(e_i,e_j). This way f(x,y)= in the standard way being the standard scalar product. So basically your correspondence takes A to f and is a bijection. The tensor product is then the space the linear map represented by A acts uniquely. This work for finite dimensional vector spaces or even finitely generated R modules over a commutative ring R. Do you agree?

  • @keerthanajaishankar1883
    @keerthanajaishankar1883 Рік тому +1

    I thank you so much for this video, helped me a lot!

  • @andresxj1
    @andresxj1 Рік тому +1

    But does the converse hold? This is, every linear well-defined map on the tensor product comes from a bilinear map on the cartesian product?

    • @MuPrimeMath
      @MuPrimeMath  Рік тому +1

      Yes, the converse holds. In other words, for every linear map g on V⊗W there exists a unique bilinear map f on V×W such that g ∘ τ = f.
      Uniqueness is obvious from the equation g ∘ τ = f because this specifies that, as functions, f is equal to g ∘ τ. We can write the map as
      f(v,w) = g(τ(v,w)) = g(v⊗w).
      Checking that this map is bilinear follows straightforwardly from the construction of the tensor product as a quotient space shown in this video and the fact that g is assumed to be linear.

    • @andresxj1
      @andresxj1 Рік тому

      @@MuPrimeMath I see. Thanks a lot. Keep up the good work!

  • @marcuschiu8615
    @marcuschiu8615 Рік тому +1

    4:40 Is v*w not a multiple of 2v*2w?

    • @MuPrimeMath
      @MuPrimeMath  Рік тому +2

      Remember that * is not denoting ordinary multiplication in this case. v*w just means "the basis vector associated with the pair (v,w)". Since each distinct pair has its own basis vector, v*w and 2v*2w are distinct basis vectors, hence not multiples of each other.

  • @adrianoseresi3525
    @adrianoseresi3525 2 місяці тому

    Hi sorry what text are you working off of?

    • @MuPrimeMath
      @MuPrimeMath  2 місяці тому

      This video wasn't working off of any particular text.

  • @sonamanimaity5543
    @sonamanimaity5543 8 місяців тому

    7

  • @luisaim27
    @luisaim27 Рік тому

    Awesome video!!! Thank you so much!!!