China Math Olympiad Geometry Problem | 3 Different Methods To Solve

Поділитися
Вставка
  • Опубліковано 22 лис 2024

КОМЕНТАРІ • 19

  • @quigonkenny
    @quigonkenny 7 місяців тому +1

    Extend BE and FD so that they meet at G. As AE = ED (given), ∠EAB = ∠EDG = 90°, ∠BEA = ∠GED (vertical angles), and ∠ABE = ∠DGE = θ (as AB and CG are parallel), then triangles ∆EAB and ∆EDG are congruent, and GE = 7.
    As ∠ABE = ∠DGE = θ, ∆BFG is isosceles, and thus FG = BF = 9. Draw FE. As E is the midpoint of the base of an isosceles triangle and F is the opposite vertex, then FE is perpendicular to BG and is the axis of symmetry for the isosceles triangle, meaning ∆FEB and ∆GEF are congruent triangles. As ∆GEF contains the area of ∆FDE and a triangle congruent to ∆EAB (∆EDG), then ∆FEB does as well, and thus takes up exactly one half of the shaded area.
    Triangle ∆FEB:
    FE² + EB² = BF²
    FE² = 9² - 7²
    FE² = 81 - 49 = 32
    FE = √32 = 4√2
    A(red) = 2•∆FEB = 2(bh/2)
    A(red) = 2(7)(4√2)/2
    A(red) = 28√2 ≈ 39.598

  • @ДмитрийИвашкевич-я8т
    @ДмитрийИвашкевич-я8т 10 місяців тому +2

    Треугольник AEB равен треугольнику BEP. Треугольник PEF равен треугольнику EDF. Треугольник BEF прямоугольный (right-angled triangle).
    [ADFB]=2[BEF]=BE*EF=7*√(81-49)=7*√32=28√2

  • @daddykhalil909
    @daddykhalil909 10 місяців тому

    Very interesting solutions
    Thank you

  • @harikatragadda
    @harikatragadda 10 місяців тому

    Reflect ∆BAE about BE to form ∆BGE. Since EG = ED, ∆EGF is Congruent to ∆EDF.
    Since ∠BEG = 90°-θ and ∠GEF =θ ,
    ∠BEF = 90° and EF = 4√2
    Red area = 2*(Area∆BEF)
    = 2*½*7*4√2 = 28√2

  • @vkr122
    @vkr122 10 місяців тому

    Area BED=BAE=7 , area ADF=BDF=2 , area AFD=1/2ABCD=14 , ABCD=28.

  • @murdock5537
    @murdock5537 9 місяців тому

    ∎ABCD → AB = CD = DE + CE = a + a = 2a → BC = BF + CF = AD = b → sin⁡(ABC) = sin⁡(BCD) = 1
    AE = 7; AF = AS + FS = b + (9 - b) = 9; DAE = EAF = ϑ; sin⁡(ASE) = 1 → ES = DE = a; FS = CF = 9 - b →
    BF = 2b - 9 → DAE = EAS = CEF = FES = ϑ → sin⁡(FEA) = 1 → EF = √(81 - 49) = 4√2 →
    a = 7(4√2)/9 = 28√2/9 → b = √(49 - a^2 ) = 49/9 → 2b - 9 = 17/9 →
    area AFCD = 2ab - a(2b - 9) = (28√2/81)(98 - 17) = 28√2

  • @Sam10099
    @Sam10099 10 місяців тому

    Very nice. Clever solutions.

  • @md.abdurrahmantarafder2256
    @md.abdurrahmantarafder2256 9 місяців тому

    In first method when we got isosceles triangle then area of triangle = 14/4 whole rootover 4×9×9 - 14×14 = 28root2

  • @olivier9125
    @olivier9125 10 місяців тому

    What is P 12:49 / 31:14

  • @sonam7choi
    @sonam7choi 10 місяців тому

    점 E에서 선분 BF에 수선을 내려 계산하면 합동인 두삼각형이 나와서 쉽게 계산됨

  • @txt.myhome7979
    @txt.myhome7979 10 місяців тому

    I went by the 3rd method

  • @juanalfaro7522
    @juanalfaro7522 10 місяців тому

    I used the 2nd method to solve the problem. I obtained the same answer.

    • @User-jr7vf
      @User-jr7vf 9 місяців тому

      I did the 3rd method, the most painful one :) because I didn't thought of the first or second method. In my opinion the first method is the most beautiful one.

  • @OrenLikes
    @OrenLikes 10 місяців тому

    Nice!
    Very long, a lot of repetition, but not skipping steps(!).
    Interesting accent... :)

  • @arnavvankudre2166
    @arnavvankudre2166 10 місяців тому

    In triangle BPF the two angles are equal then PF=BF ?

    • @MathBooster
      @MathBooster  10 місяців тому

      Yes, they will be equal

  • @annashakaia9376
    @annashakaia9376 10 місяців тому

    very bad numbers i had a right solution but in the end was very very big numbers and i had to use photomath but at the end i still got the answer