Fractal dimensions. What, why, how to.

Поділитися
Вставка
  • Опубліковано 3 лис 2024

КОМЕНТАРІ • 49

  • @mohamedrefaat197
    @mohamedrefaat197 3 роки тому +39

    Best explanation of the topic!

  • @santiagocordoba5583
    @santiagocordoba5583 2 роки тому +15

    Incredibly clear. Great examples, to the point. Thank you very much.

    • @vudomath
      @vudomath  2 роки тому

      Thanks for watching

  • @smillaw670
    @smillaw670 19 днів тому

    thankyou so much. I had to go through too many unclear toutorials to find this and I finally understand.

  • @A-v-1
    @A-v-1 14 днів тому

    Your video is beyond the words of gratitude

  • @felicianbauer
    @felicianbauer 2 місяці тому +1

    The concept of fractals being neither one nor two dimensions seemed to me quite odd, but after this explanation it appears to be logical. Even though, I still can not grasp the whole concept of fractals, the videos helped to deepen my understanding of it. Thank you for the amazing content!

  • @ItsPearE
    @ItsPearE Рік тому +1

    Super clear video. Thanks for helping me understand what’s unique about fractals beyond the fact that they are self-similar!

  • @plectro3332
    @plectro3332 2 роки тому +6

    Wonderful explanation. Thank you very much for putting in the time to do this

  • @johneagle4384
    @johneagle4384 2 місяці тому

    Thank you. Your explanation is very clear and helpful.

  • @DarthCalculus
    @DarthCalculus Рік тому +2

    Thank you for this excellent lecture! Every year I have my algebra students make Koch snowflakes before our winter holiday break. I always need to review this math before I present it to them

  • @nordfarsi980
    @nordfarsi980 3 роки тому +2

    Quick and easy explanation. Thank you.

  • @OnlyABlemish
    @OnlyABlemish 3 роки тому +4

    Incredibly helpful

  • @JYGamerDad
    @JYGamerDad Рік тому +1

    Thank you this helped me a lot! Reading a fractal book for fun and got stuck early on when it discusses Hausdorff dimension

    • @vudomath
      @vudomath  Рік тому

      Hausdorff dimension is another word for fractal dimension. Now if your book goes into Hausdorff measures, though, then it's way beyond this video.

  • @vertox4837
    @vertox4837 3 роки тому +3

    Nicely explained, thank you very much!

  • @Gd_Monsterforce
    @Gd_Monsterforce 5 місяців тому

    This is helpful! Well even though I’m not taking any test on this or learning this in class

  • @Academixx
    @Academixx 3 роки тому +3

    Very good explanation. Tqvm!

  • @gliliac5065
    @gliliac5065 2 роки тому +1

    Excelent explication!

  • @ronalthomas9031
    @ronalthomas9031 2 роки тому +1

    Very clear for a beginner on this topic

  • @khaoulael5393
    @khaoulael5393 2 роки тому +1

    Parfaitement expliqué. Good job. thank you

  • @erwinmarschall8879
    @erwinmarschall8879 Рік тому +2

    Nice explanation.
    BTW, unlike your examples with "regular dimensions", at Koch & Sierpinski you didn't "magnify the length by the factor R" but repeated the shortened base segment R times.

    • @vudomath
      @vudomath  Рік тому +1

      You're correct. Very true. But at infinity, the two are the same. As soon as you magnify everything gets repeated, and vice-versa.

  • @diamonddust8840
    @diamonddust8840 3 роки тому +2

    Really great video.

  • @TsigeredaTeshome-n2z
    @TsigeredaTeshome-n2z 10 місяців тому

    Great explanation! Thank you

  • @AlessandroZir
    @AlessandroZir 2 роки тому +1

    thanks! interesting discussion; Mandelbrot wrote about that in reference to Felix Hausdorff's conception of topological space;

  • @Spicy_Zach
    @Spicy_Zach 3 роки тому +1

    Very interesting, thanks for sharing this

  • @AshishSingh-yk6vg
    @AshishSingh-yk6vg Рік тому

    Excellent explanation

  • @punitha.g6769
    @punitha.g6769 Рік тому +1

    THANK YOU SO MUCH

  • @bertrandrochat1108
    @bertrandrochat1108 2 роки тому +1

    thanks a lot

  • @pujithamaduranga1766
    @pujithamaduranga1766 2 роки тому +1

    Thank you

  • @aous5880
    @aous5880 9 місяців тому +1

    I have a great passion for mathematics. Can I, as a doctor, study fractal geometry alone? If the answer is yes, what are the prerequisite mathematics to understand fractal geometry?

    • @vudomath
      @vudomath  9 місяців тому +1

      Oh yes. If you remember Math from before med school, you can learn fractal geometry on your own.

  • @audreyjuliene
    @audreyjuliene 2 роки тому +1

    Thank you for this. I have a question tho, how is the fractal dimension of an oval and spiral calculated?

    • @vudomath
      @vudomath  2 роки тому +1

      An oval is just one path with no fuzziness to it, so it's just dimension 1. Same with a spiral. In general, lines (straight or curved) have dimension 1. Fractal dimensions only come into play when they have an infinite number of turns (causing the fuzziness).

  • @zwerguskotus
    @zwerguskotus Рік тому +1

    Can someone explain to me, why the length of the koch-curve is multiplyied by 3 to get the dimension? I didnt get it (5:28)

    • @vudomath
      @vudomath  Рік тому +1

      We use 3 instead of 2 or some other number, because in the construction of the Koch curve, we're taking away the middle 1/3 of each segment. So a multiplication by 3 makes sense. In general, try to stay consistent with the way the figure is constructed.

  • @mohamedabdalhameed7526
    @mohamedabdalhameed7526 9 місяців тому

    Hi sir,thanks for ur great explosion, I want know what is the dimention of phytagorian tree

    • @vudomath
      @vudomath  8 місяців тому

      The answer is log(2) / log(sqrt(2)) = 2.

  • @memeticmaster
    @memeticmaster Рік тому +1

    What would a Pi dimensional space be like? I've looked up Fractal dimensions and it only goes up to about 3. This is so frustrating. I think many things might have Pi dimensions.

    • @vudomath
      @vudomath  Рік тому

      To have a dimension of 3.14159... you need to start with something 4 dimensional and start taking things away that's almost 1 full dimension but not quite. I'm sure if you search the academic materials you'll find some, but if just google, probably not, because popular sources don't tend to start with a 4-dimensional object

  • @arnaud5686
    @arnaud5686 2 роки тому +1

    Hi, I was just wondering something. If u apply the formula to a disk instead of a square and to a circle instead of a line, what fractal dimension do u obtain? Is it 2 and 1 or something else?

    • @vudomath
      @vudomath  2 роки тому +1

      Hi. If you apply the formula to the disk and circle you would get 2 and 1 as usual. The fractal formula is consistent with the "usual" dimensions for non-fractal figures.

    • @arnaud5686
      @arnaud5686 2 роки тому +1

      @@vudomath all right ty very much

  • @THE_HOLY_TRINITY
    @THE_HOLY_TRINITY Рік тому +1

    Thank you