Calculus 1: Given x+2y=4, find the max of sqrt(x)+sqrt(y)

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 19

  • @vascomanteigas9433
    @vascomanteigas9433 Місяць тому +17

    Using Lagrange Multipliers are more straightforward.

  • @maxgoldman8903
    @maxgoldman8903 Місяць тому +4

    Another method: We can find the maximum using the AM-GM inequality.
    (√ x+√ y)² = x+y+2•√ (xy)
    = x+y+2•√ (x/2)√ (2y) ≤ x+y+(x/2+2y)
    = 3/2x+3y = 3/2•(x+2y) = 3/2•4 = 6.
    Max (√ x+√ y) = √ 6.

  • @taldoedu7615
    @taldoedu7615 Місяць тому +2

    You also can use RMS-AM inequality:
    Set *E = √x + √y*
    -> E = 1/2 √x + 1/2 √x + √y
    -> E/3 = [1/2 √x + 1/2 √x + √y]/3 ≤ √[(x/4 + x/4 + y)/3]
    -> E/3 ≤ √(x + 2y)/6 = √(4/6) = √(2/3)
    -> E ≤ 3.√(2/3) = √6
    => *√x + √y ≤ √6*

  • @jubinsoni4694
    @jubinsoni4694 Місяць тому

    When the question was shared earlier, I used the method suggested in this video, thanks for sharing

  • @AtheFbEast
    @AtheFbEast Місяць тому +7

    Cool , i would really like to see algebra answer

    • @bprpcalculusbasics
      @bprpcalculusbasics  Місяць тому

      Here ua-cam.com/video/YSJzpQQSOZw/v-deo.htmlsi=70Vmlw8kD58DW79m

    • @AtheFbEast
      @AtheFbEast Місяць тому

      @@bprpcalculusbasics thx

  • @iAzazelHD
    @iAzazelHD Місяць тому +5

    Lagrange multipliers when :(

  • @timothymoorhouse1200
    @timothymoorhouse1200 Місяць тому

    Could you tell me where to find the Calculus 1, 2 and 3 curricula that you teach for? I'm curious after watching quite a number of your videos.

  • @RikiFaridoke
    @RikiFaridoke Місяць тому

    It is easy enough, surely we can solving it via derivative aplication method.

  • @economicist2011
    @economicist2011 Місяць тому +4

    3:40 You can save yourself a lot of irritation by just setting S'(y) = 0 at this point... no need to go finding common denominators or anything...
    0 = -1/sqrt(4-2y) + 1/[2*sqrt(y)]
    1/sqrt(4-2y) = 1/[2*sqrt(y)]
    sqrt(4-2y)=2*sqrt(y)
    4-2y = 4y
    6y = 4
    y = 2/3 --> x = 8/3

  • @JimmyCerra
    @JimmyCerra Місяць тому

    I used a weird method:
    1. D[x+2y=4] = dx + 2dy = 0, or dx = -2dy
    2. D[S = sqrt(x) + sqrt(y)] = S' = 0
    S' = dx/(2*sqrt(x)) + dy/(2*sqrt(y)) = 0
    dx + dy * sqrt(x/y) = 0
    Undefined at (from 2 and x+2y=4):
    x != 0 so y != 2, y != 0, so x != 4
    Combining 1 & 2:
    3. (sqrt(x/y) - 2) * dy = 0
    sqrt(x/y) - 2 = 0
    x/y = 4, x = 4y
    4y + 2y = 4, y = 2/3, x = 8/3
    Critical points:
    S(0,2) = sqrt(2), S(4,0) = sqrt(4) = 2, S(2/3,8/3) = sqrt(6)
    So max = sqrt(6).

    • @200-b8k
      @200-b8k Місяць тому +1

      How the logic works?
      Why D[x+2y=4] works
      Or u mean using partial derivative?

  • @mayureshious
    @mayureshious Місяць тому

    What if we use 2nd derivative test for maxima? If we consider ds/dy =0 then I think we get only one critical point.

  • @kaewoomusic
    @kaewoomusic Місяць тому +5

    this is more complicated than the regular method 😭

  • @Metaverse-d9f
    @Metaverse-d9f Місяць тому

    you wasted 2min. doing the table!

  • @Lolwutdesu9000
    @Lolwutdesu9000 Місяць тому

    Why do we ignore the negative roots of x and y?

    • @PawelS_77
      @PawelS_77 Місяць тому

      It's just a convention. The square root symbol used on a positive real number means the positive square root. If we need both square roots, we use the ± symbol in front of it (like in the quadratic formula, for example).
      Also in this case it's obvious that the negative roots wouldn't give us the max value.