Fear No Equation

Поділитися
Вставка
  • Опубліковано 23 січ 2025

КОМЕНТАРІ • 157

  • @BriTheMathGuy
    @BriTheMathGuy  Рік тому +58

    🎉 Get started with Notion, sign up for free: ntn.so/BriTheMathGuy

    • @parthgangwar981
      @parthgangwar981 Рік тому

      x=x+1 be like

    • @allozovsky
      @allozovsky 10 місяців тому

      A typo at 6:38: should be x = 2.4781, not -2.7231

  • @BriTheMathGuy
    @BriTheMathGuy  Рік тому +790

    By the way, x=3 is a solution too :)

    • @nzqarc
      @nzqarc Рік тому +90

      🤯

    • @ThunderxBoy
      @ThunderxBoy Рік тому +44

      Lol I thought about it the m9ment I've seen this equation

    • @Ninja20704
      @Ninja20704 Рік тому +83

      technically 3 is also in the solution you got. The 2.478... answer is if you use the principal branch of the lambert function i.e. W_0[-(ln3)/3]. If you use the -1 branch you will get the 3 that we expected.

    • @fredartson
      @fredartson Рік тому +13

      x^3= 3^x= k
      x^k^1/x=3^k^1/3
      Hmmm I wonder how 3 could be a solution 😂😂

    • @fredartson
      @fredartson Рік тому +1

      😅 but one should still know his calculus

  • @someone._.5333
    @someone._.5333 Рік тому +138

    Truly a W moment for my mathematical knowledge

    • @benetogamerOFC
      @benetogamerOFC Рік тому +2

      Literally

    • @yoylecake313
      @yoylecake313 Рік тому +7

      a W(moment for your mathematical knowledge)

    • @solifa1
      @solifa1 3 місяці тому

      @@yoylecake313 (moment for your mathematical knowledge)e^(moment for your mathematical knowledge)

  • @renesperb
    @renesperb Рік тому +104

    The function x^3*3^(-x) has a maximum 1.01379 at x = 2.73072 .This shows that there are two solutions , x =3 which is obvious , but also
    a second solution for x < 2.7 , (2.478 ).

    • @amornthepmeekangwal9421
      @amornthepmeekangwal9421 10 місяців тому +2

      How we know there are 2 solutions when we find 1 solution from Lambert W function and how to find other solutions.

    • @renesperb
      @renesperb 10 місяців тому

      @@amornthepmeekangwal9421 For the second solution you have to use the function W[-1,x].
      The function W [x] gives the solution x = 2.478 and W[-1 x] gives x = 3 .

    • @dageustice
      @dageustice 10 місяців тому +3

      ​@@amornthepmeekangwal9421 If the input is between -1/e and 0, we need to use both the real Lambert W functions, as mentioned in the video. One gives 3, the other gives the other answer

  • @namangoyal1297
    @namangoyal1297 Рік тому +130

    Can you make a video dedicated to non elementary functions? This topic has always fascinated me and I'd love to learn more about it from no one other than you.

    • @KeithKessler
      @KeithKessler Рік тому +4

      You should check out the hypergeometric function and all its special cases.

  • @עופרב-ק3י
    @עופרב-ק3י 10 місяців тому +6

    If you look at -ln3/3 in the lamber w function you can turn it into -ln3/e^ln3 and then into -ln3*e^-ln3 and since its in the lamber w function you can turn all of it to -ln3 and lastly you get x=(-3*-ln3)/ln3=3 so you can prove 3 is also solution

  • @renesperb
    @renesperb 10 місяців тому +1

    The general case : a^x = (b x+c)^p can be solved also using the Lambert-function . Setting q = - ln a /(b * p) * a^(-c/ (b * p ) , the three possible
    solutions are given by x1 = - p/ln a * W(q) - c/b , x2 = - p / ln a * W (-q ) - c/ b , x3 = -p/ ln a * W( -1 , q) - c/b .
    An example with three solutions : take a = 1.5 ,b= 1.2 ,c = 0.5 ,p = 2 . Then one gets x1= 0.50685 , x2 = 14.0932 , x3 = -1.0854.

  • @fantasypvp
    @fantasypvp Рік тому +52

    I see this as an absolute W

  • @TechGoat-LMAO
    @TechGoat-LMAO Рік тому +8

    Thank you so much sir🥹😃

  • @ssaamil
    @ssaamil Рік тому +29

    Perfect title haha! That's what I think when W function exists.
    Will you do those special or super hard integrals again? those were super entertaining to watch. Especially with you writing on the -air-

    • @farfa2937
      @farfa2937 Рік тому +6

      The W function is a way of life. Let f(x) = a for an unreasonably complicated f. Define ominous sounding function = f inverse. The answer is ominous sounding function (a). Problem solved.

  • @Matthew_Klepadlo
    @Matthew_Klepadlo Рік тому +17

    I probably shouldn’t watch this video until I can solve this myself, since this is good practice for me learning to use the lambert function.

    • @Oliver_DaNinja
      @Oliver_DaNinja 7 місяців тому

      I mean, you can very simply solve it by realizing x=3 is a solution. 🙃

  • @advaykumar9726
    @advaykumar9726 Рік тому +1

    I was just thinking about this equation and also about lambert w function yesterday!!!

  • @farfa2937
    @farfa2937 Рік тому +13

    I guess, there are more solutions if you use all 3 (complex) cube roots of 1? It really looks like Lambert wanted to solve xe^x, got tired, and invented a function that solves the problem by whatever means necessary. Which.... is not wrong I guess.

    • @zihaoooi787
      @zihaoooi787 Рік тому +1

      For the positive imaginary solution, you use the W_1 branch. For the negative imaginary solution, you use the W_-1 branch. I’d assume that two out of the three representations give the same number.

  • @THE_HONOURED_ONE_LOL
    @THE_HONOURED_ONE_LOL 3 місяці тому +1

    A truly W func fr 0:51

  • @zelda1420
    @zelda1420 8 місяців тому

    Me at 0:45, already holding a frozen treat from Bahama Buck's: "Way ahead of you."

  • @SuryaBudimansyah
    @SuryaBudimansyah Рік тому +12

    The topic that blackpenredpen love

    • @solarisone1082
      @solarisone1082 Рік тому

      Yeah, he just posted a video featuring it.

  • @allozovsky
    @allozovsky 10 місяців тому

    There's a typo at 6:38: putting in W = -0.9075 gives a positive x = 2.4781, not a negative -2.7231, as mentioned in the video. A minute earlier at 5:38 it was put correctly.

  • @mozd1729
    @mozd1729 Рік тому +33

    at 4:00, cube root of 1 is not only 1 but also (-1±i√3)/2

    • @happydogeyt1962
      @happydogeyt1962 Рік тому +3

      DAYUM

    • @zihaoooi787
      @zihaoooi787 Рік тому +5

      For that you need the W_1 branch of the W function.

    • @21centuryhippie61
      @21centuryhippie61 11 місяців тому +2

      Not true! The exponential functional notation must be functional! As such, there can be only be one equivalent value to any expression of a base number exponentiated. Otherwise statements violate the injective property of all functions. In other words, the equation x^3 = 1 does indeed produce three solutions for x, but the real number 1^(1/3) cannot be equivalent to more than one value, per the basic conventions of functional notation!
      Common and easy mistake to make, but worth correcting nonetheless!

    • @mozd1729
      @mozd1729 11 місяців тому +1

      @@21centuryhippie61 ah true I forgot about that

  • @matthewhastings2568
    @matthewhastings2568 10 місяців тому +3

    6:46 says -2.7231 is the solution but that’s a typo: it is indeed 2.47...

  • @StevenTorrey
    @StevenTorrey Місяць тому +1

    You don't really explain what you are actually doing to get 2.47805. Though quick math confirms that is correct: 2.48^3 (15.25) = 3^2.48 (15.25). But it still ends up being a mystery how you got there.

  • @RadekBuczkowski-h2y
    @RadekBuczkowski-h2y 10 місяців тому +5

    This equation has two real solutions: x=3 and x≈2.478
    Here is how to derive them properly.
    x^3 = 3^x | ^(1/3) note: sign is unchanged!
    x = 3^(x/3) | 3^(x/3) = (e^ln(3))^(x/3) = e^(x*ln(3)/3)
    x = e^(x*ln(3)/3)
    x * e^(-x*ln(3)/3) = 1 | * -ln(3)/3
    -x*ln(3)/3 * e^(-x*ln(3)/3) = -ln(3)/3 | Lambert W on both sides
    -x*ln(3)/3 = W(-ln(3)/3)
    If the entire parameter of Lambert W is greater or equal zero, it is has only one real solution (branch 0).
    If less than zero and greater or equal -1/e, it has two real solutions (branch 0 and -1).
    If less than -1/e, no real solutions.
    Lambert W parameter:
    -1/e ≈ -0.368 < -ln(3)/3 ≈ -0.366 < 0 => Lambert W has two real solutions!
    Integer solution:
    -x*ln(3)/3 = W(-ln(3)/3) | 1/3 = e^ln(1/3) = e^(-ln(3))
    -x*ln(3)/3 = W(-ln(3) * e^(-ln(3)))
    -x*ln(3)/3 = -ln(3)
    -x/3 = -1
    x = 3
    Lambert W is also called productlog in WolframAlpha.
    The first parameter of productlog is optional, and indicates the productlog branch (default is branch 0).
    The branch is an integer ∈ ℤ. There are infinitely many productlog results in complex numbers for all branches.
    Real solutions of productlog, however, can only be in branches 0 and -1.
    Here are both real solutions calculated in WolframAlpha:
    x = -3 * productlog(0, -ln(3)/3) / ln(3) = 2.47805268028830...
    x = -3 * productlog(-1, -ln(3)/3) / ln(3) = 3

  • @symmetricfivefold
    @symmetricfivefold Рік тому +10

    me casually waiting for a product log calculator to be made for students to bring to exams:

  • @pilotharibo
    @pilotharibo Рік тому +3

    x^3 has 3 solutions does this lead to more solutions for the entire thing?

  • @GodMineptas
    @GodMineptas Рік тому +9

    Love your vídeos❤️🇧🇷

  • @jackzegas
    @jackzegas 5 місяців тому +2

    So x = 3 is also a solution. But my question is how can there be two solutions? Both of the functions are monotonically increasing. And after the exponential function increases the cubic function the rate at which it's increasing is faster so how is it ever possible that the graphs can intersect twice?

    • @therobot1080
      @therobot1080 9 днів тому

      The reason is the multiple branches of the W function I'd presume. It's multivalued, so here we get multiple solutions

  • @StrayChoom
    @StrayChoom 7 місяців тому

    Coding the newton rhapson method is very easy, but how would you do it by hand?

  • @ВикторПоплевко-е2т
    @ВикторПоплевко-е2т 5 місяців тому

    5:35 I'm trying to figure out what am I doing wrong
    can't we say that -ln(3)=ln(1/3) and -ln(3)/3=1/3*ln(1/3)=e^ln(1/3)*ln(1/3) and W(e^ln(1/3)*ln(1/3))=ln(1/3)=-ln(3) so the entire fraction -3W((-ln(3)/3)/ln(3) simplifies to just 3 which is one of the solutions? correct my mistake please it's probably about the branches of the W function
    Edit 1: not about branches I'm probably stupid

  • @grayjphys
    @grayjphys 7 місяців тому

    Is there a typo? It seems like you need to divide -2.7231 by -Ln(3) to get the nontrivial solution. Looks like two steps were missed.

  • @glowstonelovepad9294
    @glowstonelovepad9294 Рік тому +2

    e^x is always greater (or equal at x=e) than x^e.

  • @xyaf.
    @xyaf. Рік тому +1

    You really complicated the whole solution

  • @nicolastorres147
    @nicolastorres147 Рік тому +1

    How are the branches of W even ordered (as in the subscript)?

  • @hrsulabh
    @hrsulabh 7 місяців тому

    Bro but why there exits an extragenous root
    Is there a domain for w(xe^x)=x
    As till second last step 3 satisfies but after introducing lambert function [ whose domain is -1/e to infinity which is satisfies] and using xe^x, 3 is not yet the soln
    As solving in elegant way always requires each step to be accurate

  • @pianohouse2725
    @pianohouse2725 8 місяців тому

    3:00 cant x=3 ?

  • @prabhjeevansingh7429
    @prabhjeevansingh7429 4 місяці тому +1

    This Videos Title is misleading. I am now also scared of Lamberts function

  • @partha0212
    @partha0212 11 місяців тому

    Apply loag on first step and then derivate it to get the value of x

  • @francis6888
    @francis6888 Рік тому

    -ln3/3 is also equal to ln(1/3)×e^(ln(1/3))

  • @Hinyousha
    @Hinyousha Рік тому +2

    I don't understand why are some functions not considered analytical.
    Logarithms are also defined as the inverse of another function and are not represented using the other function notation but a new one and are considered analytical, while the W(•) is not

    • @klausklausen4301
      @klausklausen4301 Рік тому +4

      The lambert W function is analytical. You can see it's taylor series representation at 2:09. You might've mixed up analytical with elementary.

  • @VVeiQuek
    @VVeiQuek Рік тому

    How is `3` not the solution in any of the methods? 3^3 = 3^3?

    • @supremeclamitas5053
      @supremeclamitas5053 8 місяців тому

      Yes, 3's a solution to this, it's just not mentioned

  • @gamingtime853
    @gamingtime853 Рік тому

    You can use logarithms also

  • @michaelbaum6796
    @michaelbaum6796 Рік тому

    Very nice equation👍

  • @geopediashorts
    @geopediashorts 5 місяців тому

    so, W(e) would just be 1? (bc W(1 x e^1))

  • @Speed001
    @Speed001 Рік тому +1

    0:07 hmm, only W i know is the Wrongston. I can’t spell it.

  • @WK-5775
    @WK-5775 Рік тому +4

    Why does the W function not yield to the obvious solution x=3? That does not quite give a reliable impression.

    • @johns.8246
      @johns.8246 Рік тому

      Cause it's not really a function.

    • @RaniDevi-xt4hq
      @RaniDevi-xt4hq Рік тому +6

      If you use the -1 branch of Lambert W function it yields the solution.

    • @WK-5775
      @WK-5775 Рік тому +2

      @@RaniDevi-xt4hq OK, I begin to see. So this branching business has to be explained much better than just mumbling something about the W function being "multivalued". Where is tbe cut? How many branches are there? Is there some "default" branch? Which one was used in the video? Why doesn't the obvious solution of the original equation appear in the default branch? Do the other branches give other values (complex ones, I suppose)? Are there Infinitely many of them?
      Without such information, that W function remains mysterious magic.

    • @RaniDevi-xt4hq
      @RaniDevi-xt4hq Рік тому

      @@WK-5775 en.m.wikipedia.org/wiki/Lambert_W_function#:~:text=The%20principal%20branch%20W0,%2C%20Hare%2C%20Jeffrey%20and%20Knuth.
      You can read this page.

    • @oreql9843
      @oreql9843 Рік тому +3

      @@WK-5775 there are two branches to the lambert w function- 0 and -1, the one in this video is the principle branch or the 0 branch. the solution x = 3 comes in the -1 branch. if -1/e < x < 0, there will be two solutions to the equation.

  • @Bangtan_Vibes_7
    @Bangtan_Vibes_7 8 місяців тому

    My solution steps were like this:
    X^3 = 3^x
    →log(x^3) = log(3^x)
    →3logx = xlog3
    →(logx)/x = (log3)/3
    So i can absolutely write that x=3.

  • @nicolastorres147
    @nicolastorres147 Рік тому +2

    4:07 complex cube roots tho

    • @zihaoooi787
      @zihaoooi787 Рік тому

      Use different branches of the lambert function.

  • @XanderSebestyen
    @XanderSebestyen Рік тому +4

    X = 3 3 to the power of 3 is equal to 3 to the power of 3

  • @anncherian
    @anncherian Рік тому +1

    Soo cool

  • @Rai_Te
    @Rai_Te 2 місяці тому

    The solution shown in this video a 6:46 ... x=-2,7231 is obviously wrong. A simple test would have brought this up.

  • @ciiil8802
    @ciiil8802 8 місяців тому

    Me: i have never seen this man in my line

  • @pecavocado4316
    @pecavocado4316 7 місяців тому +1

    my answer is messed up.
    x=3^(x/3)
    3=x^(x/3)
    3=(3^(x/3))^(x/3)
    3=3^((x^2)/9)
    3^9=3^(x^2)
    9=x^2
    x=3

  • @emelilukas8942
    @emelilukas8942 10 місяців тому

    I exponatiated both sides with 1/3 and then plugged in 3^(1/3*x) x, so i got 3^(1/3*3)^(1/3*3)… wich simplifies to 3^1^1^1…. so i just got 1 with basic algebra

  • @chesun2
    @chesun2 Рік тому

    amazing

  • @fishHater
    @fishHater Рік тому

    Why did I get deja vu from this?

  • @eeeeee8762
    @eeeeee8762 Рік тому

    I fear no equation... but this *thing*... it scares me.

  • @shazullahyusufzai5704
    @shazullahyusufzai5704 Рік тому

    How do we solve the equation to find x=3

    • @thecarman3693
      @thecarman3693 Рік тому +1

      Technically ... just look at it.

    • @zihaoooi787
      @zihaoooi787 Рік тому

      1. Look at it
      2. See that cbrt 1 has 3 solutions. Use the imaginary solutions with the corresponding branch of W to solve.

  • @CalculusIsFun1
    @CalculusIsFun1 Рік тому +3

    x^3 = 3^x
    3ln(x) = x(ln(3)
    (3ln(x))/ln(3) = x
    3/ln(3) = x/ln(x)
    ln(3)/3 = ln(x)/x
    ln(3) * 3^-1 = ln(x) * x^-1
    -ln(3) * e^-ln(3) = -ln(x) * e^-ln(x)
    apply lambert function.
    -ln(3) = -ln(x)
    ln(3) = ln(x)
    x = 3
    Alternative way, alternative solution.

  • @mayosmayo4738
    @mayosmayo4738 Рік тому

    Mathematicians are really just people that spend all day making and solving puzzles

  • @Israel-Niles
    @Israel-Niles 10 місяців тому

    I just noticed that your voice sounds a lot like CGP Grey’s😅😅😅

  • @TheRook404
    @TheRook404 Рік тому +5

    Me:
    x is 3 !

  • @mohammadjaveed7404
    @mohammadjaveed7404 7 місяців тому

    x equal to 3 is exact solution of equation.

  • @BirdsAreVeryCool
    @BirdsAreVeryCool Рік тому

    i agree

  • @globalwarrior16
    @globalwarrior16 Рік тому

    I did it on desmos
    I got 2.478

  • @natashok4346
    @natashok4346 Рік тому

    Why 0^x=x^0 no solution?

    • @liamernst9626
      @liamernst9626 Рік тому +2

      0^x is either indeterminate if x=0 or it is 0, x^0 is either indeterminate if x=0 or it is 1

  • @mohanvaddadi
    @mohanvaddadi 3 місяці тому

    X^3 = 3^x; the empirical solution is x=3; why this solution is not reflecting anywhere.

    • @meriabreadsticks
      @meriabreadsticks 3 місяці тому

      The solution for that is in the solution shown, but its via the W_-1 branch of the Lambert function. The empirical solution is the most obvious way of course, but the point is to "derive" the solution rather than having "a solution" that you don't know how it works.

  • @TheG0ldx
    @TheG0ldx Рік тому +1

    You should have gone a bit deeper into the details :(

  • @hvgaming8379
    @hvgaming8379 9 місяців тому

    W function

  • @yoshikagekiraaaaa
    @yoshikagekiraaaaa Рік тому

    yes, that's me:)

  • @outhereplayin
    @outhereplayin Рік тому

    Valid for any no. x^n = n^x, I used to tease my friends in class while I was in 9th grade.

  • @JustDeerLol
    @JustDeerLol Рік тому

    Hello!

  • @_Exen_
    @_Exen_ 6 місяців тому

    there is a much easier way to do:
    3^x = x^3
    ln (3^x) = ln (x^3)
    x ln(3) = 3 ln(x)
    x = 3 ln(x)/ln(3)

  • @soulsofspirit9729
    @soulsofspirit9729 10 місяців тому

    3.

  • @soulsofspirit9729
    @soulsofspirit9729 10 місяців тому

    3^3 = 27, 3^3 = 27

  • @TheKnowledgeOfScience
    @TheKnowledgeOfScience 2 місяці тому

    X=3

  • @jessiez7006
    @jessiez7006 11 місяців тому

    x=3.

  • @Crawsome_Crustacean
    @Crawsome_Crustacean Рік тому

    1000th like

  • @Joneyboloney
    @Joneyboloney Рік тому

    3 days ago🎉

  • @heniwatisetiono6995
    @heniwatisetiono6995 Рік тому

    x=3

  • @navsha2
    @navsha2 Рік тому +1

    1:09 the equation is showing f=w if you agree 👇

  • @A_boy_lol
    @A_boy_lol 2 місяці тому

    X is 3 😭😭😭

  • @Chiswick-Edward
    @Chiswick-Edward 9 місяців тому

    3

  • @984francis
    @984francis Рік тому

    27=27

  • @pideperdonus2
    @pideperdonus2 Рік тому +3

    The solution for X^Y = Y^X is just X=Y so its just X^X, right?

  • @thevividversatilechannel4807
    @thevividversatilechannel4807 10 місяців тому

    x = 9

  • @Lomainium
    @Lomainium Рік тому

    x=3

    • @gregorymagery8637
      @gregorymagery8637 5 місяців тому

      This is how i solved it
      x^3 = 3^x
      x^(3/x)=3
      (3/x)*lnx=ln3
      3x^(-1)*lnx=ln3
      (-lnx)*e^(-lnx)=(-ln3)/3
      -lnx = W[(-ln3)/3]
      -lnx = W[(-ln3)*3^(-1)]
      -lnx = W[(-ln3)*e^(-ln3)]
      -lnx = -ln3
      x = 3
      I wonder how can same formula give 2 different and correst solutions (2,47805 and 3)
      x={3W[-(ln3)/3]}/(-ln3) (=2,47805)
      =3*(-ln3)/(-ln3)
      = 3

  • @asev1969
    @asev1969 2 місяці тому

    Мерзкий составитель испортит жизни немалому числу ребят, пока его наконец-то репрессируют.

  • @redroach401
    @redroach401 Рік тому

    too easy

  • @playwulf5483
    @playwulf5483 Рік тому

    bro just
    X * X * X = 3 * 3 * 3
    x=3
    no thanks easy

  • @Merched45
    @Merched45 Рік тому

    Something that could have been done was, at the end, write (-ln3)/3 as -ln(3)e^(-ln3), giving 3 as a result

  • @maheshprajapati8916
    @maheshprajapati8916 Рік тому

    Plz dubbed in hindi 🙏

  • @kakashiamv7837
    @kakashiamv7837 Рік тому

    X=3,(-3±3√-3)/2

  • @renesperb
    @renesperb Рік тому

    The solution x=3 is immediately obvious . This is also the only real solution ,if one looks at the graphs of x^3 and 3^x.

    • @renesperb
      @renesperb Рік тому +1

      Sorry, I missed the other solution x= 2.47......

  • @kirbylover_6
    @kirbylover_6 3 місяці тому

    “x^3=3^x”
    I mean yeah if x=3
    “≈2.47805”
    *w h a t*
    “≈-2.7231”
    *w h a t ^ 2*

  • @dueie83
    @dueie83 Рік тому

    Click ehat video on the screen, wait i dont see it