Neural Ordinary Differential Equations

Поділитися
Вставка
  • Опубліковано 12 лис 2024

КОМЕНТАРІ • 25

  • @444haluk
    @444haluk 19 днів тому +1

    You explained the adjoint method PERFECTLY.

  • @shorray
    @shorray 3 роки тому +25

    Herr YEAH! i was fighting like for 2 Weeks with the adjoint method and nobody really explained like this in detail. Thanks a lot keep going!

    • @kodfkdleepd2876
      @kodfkdleepd2876 2 роки тому

      Or maybe it just took you 2 weeks to get it and you just happen to be watching this video when it "clicked"?

  • @vishwajitkumarvishnu3878
    @vishwajitkumarvishnu3878 3 роки тому +6

    Best video/blog so far on neural ODEs

  • @tanmayahmed4622
    @tanmayahmed4622 3 роки тому +9

    Thank You very much, Sir. This is by far most easy explanation of neural ODE.

  • @nzambabignoumba445
    @nzambabignoumba445 3 місяці тому

    Definitely the best Neural ODE explanation! Thank you sir!

  • @keb785
    @keb785 6 місяців тому +1

    This is very helpful; I appreciate it as it provides a comprehensive review with detailed explanations

  • @mswification
    @mswification Рік тому +1

    I agree with all the previous comments, this was a terrific explanation. I particularly appreciated that you included details of the proof of the adjoint method.

    • @Rjsipad
      @Rjsipad Рік тому

      could you explain the difference between lower case f and theta? I'm a bit confused as to how they are different

  • @jishnuak3000
    @jishnuak3000 Рік тому

    Thanks for explaining the proof, couldn't find it anywhere else

  • @congphuocphan
    @congphuocphan Місяць тому

    10:05 I understand that the f is exactly the z() function at the time t, am I right?

  • @mohamedmusa7149
    @mohamedmusa7149 2 роки тому

    Excellent exposition of the paper! Thank you.

  • @fbf3628
    @fbf3628 Рік тому

    This is a truly great explanation!

  • @siddharthshrivastava5823
    @siddharthshrivastava5823 3 роки тому +1

    Awesome explanation!!

  • @gamebm
    @gamebm 4 місяці тому

    Thanks for the video and detailed derivation. There is a question/comment which really puzzles me. First, if L is a number, which measure the deviation (eg. absolute difference between) of estimation z(t) from the real value, then the mapping z(t) -> L is a functional by definition. We would have, instead, \delta L/\delta z(t) = a(t) naturally defined as a functional derivative. However, as I tried to follow the arguments used in this video (29:28), I realized that it changes a lot (as dz(t+\Delta t)/dz(t) does have its counterpart in the context of functional). So I was forced to understand that the notion of functional is irrelevant here, one defines a number L as a function of another number z(t) which is a function evaluated at a given time, but must not be understood as a function of time. Under such an enforced context, the derivation then makes sense. PS: please do not use "partial" in the numerator and "d" in the denominator, as I don't believe this is the standard.

    • @gamebm
      @gamebm 4 місяці тому

      On a second thought, a(t) is indeed reminiscent of the functional derivative defined as a(t)=\delta L/\delta z(t). It is very inviting to state that for z(t) satisfying \dot{z}=f(z,t), one has \dot{a}=-a \partial f/\partial z. Except for its variation the function z(t) is not fixed at both end points as per the definition of functional differential, therefore it one follows that path (which mostly should work), one must introduce some proper modifications.

  • @hannes7218
    @hannes7218 Рік тому

    great explanation! :)

  • @bwan03
    @bwan03 3 роки тому +2

    Brilliant! You're really good at explaining I must say. Excellent job! May I please ask what you used for presentation and drawing equations Andriy?

    • @AndriyDrozdyuk
      @AndriyDrozdyuk  3 роки тому +1

      Thanks! I think it was GoodNotes with ipad screen recording and apple pencil. (I just cut the surrounding window borders in the final recording)

  • @tenkunvan60
    @tenkunvan60 5 місяців тому

    28:44, i think the backward equation of the adjoint method might be wrong and the integral term should be negative

  • @francoisgauthier-clerc6413
    @francoisgauthier-clerc6413 3 роки тому

    Good job, very clear explanation !
    However, it's sad that you didn't introduce some implementation of the function f. How can we design and implement such continuous function ?

    • @AndriyDrozdyuk
      @AndriyDrozdyuk  3 роки тому +2

      Oh that function doesn't exist - that's just for explanation purposes. This is what ODE solver does basically.

  • @boriscrisp518
    @boriscrisp518 4 місяці тому

    illegible hand written scrawl... just like my undergrad days

  • @danielschwegler5220
    @danielschwegler5220 Рік тому

    Thanks for the superb explanation!