Python 3.13 vs. Julia 1.11 with Word Frequencies

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ •

  • @chrismen83240
    @chrismen83240 7 днів тому +1

    1.11 make Array a native julia type instead of a c wrapper, I think Dictonnary now also rely on the new Memory type so that made it even better. 1.12 should allow the compiler to actually use it to say if a vector should be only stack allocated ect ect so maybe another 1.5 x there ? not sure at all

  • @sounkoumahamanetoure4607
    @sounkoumahamanetoure4607 Місяць тому +2

    What would the same task in R look like given the native aggregation functions ?

    • @ekbphd3200
      @ekbphd3200  Місяць тому +1

      I think you’re referring to the table function in base R. Yeah, you could load up all words in a vector and then pass that vector into the table function and then use the names function to get the words out of the table result (as the table result itself holds the numbers).

    • @juvencus_
      @juvencus_ 29 днів тому

      @@ekbphd3200And speed-wise?

    • @ekbphd3200
      @ekbphd3200  10 днів тому

      I haven’t tested it, but I assume it would be slower than data.table and tidyverse.

  • @DataPastor
    @DataPastor 18 днів тому +1

    That is not even an order of magnitude difference… and the Python code is not even optimized for speed. Well done Python! 🎉