Runge Kutta 4th order done in Excel

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 18

  • @flipnogaming1398
    @flipnogaming1398 Рік тому

    Seriously, thank you so freaking much. You did such an amazing job with this video. I don’t think I’ve ever seen an excel math video that was so easy to follow before

  • @kentbourgoing5864
    @kentbourgoing5864 4 роки тому +3

    What an excellent tutor Micky is! Hope he releases more videos :D

  • @stephaniejimenez8500
    @stephaniejimenez8500 4 роки тому +2

    Thank you so much! This is so helpful. I hope you get a raise for this :)

  • @ЗавуалированнаяАпатия

    FUCK! thx for ur video men! Many vids describe this method about 2 houra, you showed us this in 10 minutes. And now I can use ur material in engineering practice.

  • @Choudhary_Shahab
    @Choudhary_Shahab 4 роки тому +1

    Thank you so much Sir.
    Please make more videos .
    Very much helpful.

  • @deborahfranza2925
    @deborahfranza2925 4 роки тому +3

    GODDAMNIT THIS WAS SO GOOD GAH

  • @fahmylina123
    @fahmylina123 3 роки тому +8

    For the comparison with the exact solution, we need to get the integration of the derivative, y' =
    dy/dx = 2xy
    We divide both sides by y,
    1/y (dy/dx) = 2x
    and then integrate both sides,
    ∫ (1/y) dy = ∫ 2x dx
    ∫ (1/y) dy = 2 * ∫ x dx
    the solution on both sides is given by,
    ln y = 2 * ((1/2) x^2 + C)
    ln y = (x^2 + C)
    and using the exponential (the antilog) on both sides,
    y = e^(ln y) = e^(x^2 + C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
    Now, the question is: From where we get the confirmations that C = -1?
    For y =1, and x =1
    y = e^(ln 1) = e^(1^2 + C)
    y = e^(ln 1) = e^(1 + C)
    ln 1 = 1 + C
    0 = 1 + C
    -1 = C
    Now, we write equation (1) as follows,
    y = e^[(x^2) -1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . (2)
    Now, for x =1, y is given by,
    y = e^[(1^2) -1] = e^(1 -1) = e^0 = 1
    and for x =1.1, y is given by,
    y = e^[(1.1^2) -1] = e^(1.21 -1) = e^0.21 = 1.233678
    and for a list of x values, y is given as follow,
    x (x^2) (x^2)-1 e^[(x*2)-1]
    1.00 1.000000 0.000000 1.000000
    1.10 1.210000 0.210000 1.233678
    1.20 1.440000 0.440000 1.552707
    1.30 1.690000 0.690000 1.993716
    1.40 1.960000 0.960000 2.611696
    1.50 2.250000 1.250000 3.490343

  • @shaaadah4858
    @shaaadah4858 3 роки тому +1

    very useful! thank you so muchhh

  • @AddisuMuluken
    @AddisuMuluken 7 місяців тому

    Good mathemation

  • @andilezoey7475
    @andilezoey7475 8 місяців тому

    Thank you so very much!❤

  • @hafizuddinmohdlowhim8426
    @hafizuddinmohdlowhim8426 3 роки тому +1

    Amazing!

  • @harishthiruvengadam7511
    @harishthiruvengadam7511 4 роки тому +1

    Thanks a lot..!!

  • @EngrNeila-fv1bi
    @EngrNeila-fv1bi 3 роки тому +1

    thank you ao much

  • @wolfie8748
    @wolfie8748 Рік тому

    what would we do if we have 2 diff functions ?

  • @caulist
    @caulist 3 роки тому +2

    A foto de EULER e´ na verdade a de Gauss. Corrija

  • @proteins327
    @proteins327 3 роки тому +1

    Damn

  • @LucinoGarcia
    @LucinoGarcia 3 роки тому +1

    I love you