Graham's Number Escalates Quickly - Numberphile

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 1,8 тис.

  • @l3igl2eaper
    @l3igl2eaper 8 років тому +1615

    I wrote a letter to Mister Graham and he told me to look him up and call him. I found his number but it's gonna take a while to dial.

    • @balintkurucz7245
      @balintkurucz7245 8 років тому +36

      I can't press "like" on mobile, but that was funny!

    • @AuroraNora3
      @AuroraNora3 8 років тому +44

      You can press like.......

    • @lilygierula5885
      @lilygierula5885 7 років тому +17

      Bálint Kurucz I have liked my own comment once

    • @poiewhfopiewhf
      @poiewhfopiewhf 7 років тому +3

      no one would be that dismissive to not give their number while at the same time ask you to call

    • @reallaughing
      @reallaughing 7 років тому +15

      poiewhfopiewhf (It's a joke. He got Graham's number (double entendre here) but couldn't call it (due to the number of digits there were) (I ruined the joke by explaining it, I'm sorry...))

  • @DyllonStejGaming
    @DyllonStejGaming 10 років тому +604

    Any online calculator that I try just lists the triple arrow as infinity...
    *And that's just the third arrow.*

    • @numberphile
      @numberphile  10 років тому +108

      DyllonStej Gaming it's a big number!

    • @DyllonStejGaming
      @DyllonStejGaming 10 років тому +29

      Not infinitely big, though!

    • @gregdesouza17
      @gregdesouza17 10 років тому +27

      It is kind of nonsense (in maths) defining big numbers, cause any number is really small compared to infinity...
      But it's cool anyway...

    • @rich1051414
      @rich1051414 10 років тому +53

      DyllonStej Gaming Grahams number might as well be infinity, it is so big we have have not enumerated anything that requires such a large number. The number of atoms in the observable universe is around 10^80. That is TINY compared to grahams number.
      The number of ways any atom in the universe can interact with any other atom in the universe: (10^80!) / 2 STILL less than grahams number.
      The number is larger than any conceivable measurement, so what is the difference? xD

    • @zach.hanford
      @zach.hanford 10 років тому +7

      Richard Smith I must say, that is a fascinating comment.

  • @numberphile
    @numberphile  10 років тому +81

    In a previous video I "under explained" the true magnitude of Graham's Number. This is because my brain is small. Apologies to Professor Graham who has a big brain and unsurprisingly explained his number flawlessly. This video is designed as a correction that can also stand alone. It will be our last Graham's Number video (for a little while, at least!)

  • @IgorKovacs
    @IgorKovacs 10 років тому +338

    It's funny how, no matters how many videos i've seen about Graham number, it's always interesting and mind blowing. Thanks, Brady

    • @numberphile
      @numberphile  10 років тому +57

      Igor Kovacs Biscaia cool - thank you for watching

    • @beachball6309
      @beachball6309 4 роки тому

      Can I get 100 subs before 2021?

    • @gabenugget114
      @gabenugget114 Рік тому

      @@numberphile Hey! There is a way to do it with the ^ sign! Just replace ⬆️s with ^s!

    • @Triantalex
      @Triantalex Рік тому

      false.

  • @Izandaia
    @Izandaia 9 років тому +75

    Finally, a video explaining how arrow notation actually works.

    • @gordontaylor2815
      @gordontaylor2815 8 років тому +4

      +Izandai It shouldn't be very hard to understand or explain, because the principle behind the arrows is the same as the more familiar operations. Multiplication -> iterated addition, exponents -> iterated multiplication, arrow notation -> iterated exponents.

    • @mauricioubillusmarchena6660
      @mauricioubillusmarchena6660 3 роки тому

      @PewDieMilestones basically, and then repeated tetration is pentation (triple arrow), repeated pentation is hexation, etc, etc.
      They are just operations which repeat the one before n number of times.

    • @ser_igel
      @ser_igel 2 роки тому +1

      @@gordontaylor2815 the arrow notation is pretty simple yet pretty hard for one simple reason: we can imagine multiplication even of huge numbers, we can imagine exponentiation of huge (yet not so huge anymore) numbers but tetration is already really big so we can't imagine it for big numbers (sometimes big is just bigger than 10), and pentation goes even further, we only can imagine it in the same notation they were represented
      the operation itself is easy, but to understand how these things work as numbers you need to reconstruct your mind a bit

  • @xxFortunadoxx
    @xxFortunadoxx 9 років тому +249

    It truly is stunning just how massive G2 is from G1.

    • @piotao
      @piotao 4 роки тому +12

      And G2 from G3...

    • @gmdqwertypo202
      @gmdqwertypo202 4 роки тому +3

      And G3 from G4...

    • @user-yr5ze7cc9z
      @user-yr5ze7cc9z 4 роки тому +3

      And G4 from G5...

    • @anticorncob6
      @anticorncob6 4 роки тому +14

      Yeah, you can argue that G2 is just as big compared to G1 as G1 is compared to 4.
      In both instances, the former number contains the latter number of arrows.

    • @gmdqwertypo202
      @gmdqwertypo202 4 роки тому +3

      @@anticorncob6 that make this all unbelievably crazy

  • @depenthene
    @depenthene 9 років тому +110

    This is the best explanation I have seen. Maybe because it is explained to normal people, not to math genius.

    • @ericwhite2497
      @ericwhite2497 8 років тому +16

      +depenthene
      "If you can't explain it simply, you don't understand it well enough." -Einstein

    • @Peter_1986
      @Peter_1986 8 років тому +6

      +depenthene
      Math should always be explained in as simple and intuitive ways as possible, no matter what level it is.
      There is absolutely no reason whatsoever to make it any more complicated than necessary - people who try to make it look complicated on purpose just try to show off.

    • @depenthene
      @depenthene 8 років тому

      ***** I will check it out. Thank you.

    • @Peter_1986
      @Peter_1986 7 років тому

      Daniel Cannata
      So you assume that just because some people have problems with math, they are by definition "dumb"?
      I know several people who find math difficult and confusing, and they are extremely bright in a lot of other things - they can solve problems, they can understand other people's emotions very well, and they can make very sensible decisions in various situations.
      And yes, all those things are signs of intelligence.

    • @darknessbr3209
      @darknessbr3209 5 років тому

      @@Peter_1986 not just math,everything should be explained in that way

  • @Tytoalba777
    @Tytoalba777 10 років тому +353

    ow, my brain

    • @numberphile
      @numberphile  10 років тому +90

      James A Clouder oops, sorry

    • @icannotchoose
      @icannotchoose 10 років тому

      Numberphile ★☆★☆★☆OMG This has nothing to do with the comment but I wanted to get your attention. PLEASE make a video on how to solve infinite (divergent specifically) series!!!...!(G64 !'s)☆★☆★☆★

    • @zwz.zdenek
      @zwz.zdenek 9 років тому +6

      *****
      You just broke the universe.

    • @MatteoBlooner
      @MatteoBlooner 9 років тому +2

      Well, i am a googologist, so i study numbers WAY bigger than grahams number. Including TREE3.

    • @georgia-qy9ve
      @georgia-qy9ve 9 років тому +3

      Superblooner1 3(GTREE3)3

  • @AskiFin
    @AskiFin 10 років тому +53

    “Philosophy is a game with objectives and no rules. Mathematics is a game with rules and no objectives.”

  • @darshanpala
    @darshanpala 10 років тому +72

    Hey Brady! I know you don't consider yourself to be a great teacher, but this is so far the best explanation of Graham's number you have put up so far. :)

    • @numberphile
      @numberphile  10 років тому +28

      Darshan Pala that's very nice of you... although I only made this video because of my own stupid mistake last time! :)

    • @laurenhatfield4983
      @laurenhatfield4983 10 років тому +4

      Brady I love hearing you explain things and how you get so excited about the math :)

    • @vedantsridhar8378
      @vedantsridhar8378 Рік тому +1

      @@numberphile Was it the mistake where you said 3^^^3 has 3.6 trillion digits? Because it has way more than 3.6 trillion digits. In fact, the top 5 3s in the power tower itself have a value that's way larger than a googolplex, but the power tower contains 7.6 trillion 3s. So the number of digits in 3^^^3 is itself way beyond comprehension. In fact, the number of digits in the number of digits in the number of digits.............. in the number of digits in the number of digits in 3^^^3 is 3.6 trillion. (The number of times you say 'in the number of digits' is itself 7.6 trillion!") With that, Graham's number must be so large!

  • @IMortage
    @IMortage 10 років тому +627

    You are trying to make Graham's Number of videos about Graham's number, right?

    • @numberphile
      @numberphile  10 років тому +194

      IMortage that would be quite an achievement

    • @IMortage
      @IMortage 10 років тому +73

      Numberphile
      Go for it! Try to collapse google's server park into a black hole.

    • @Wafflical
      @Wafflical 10 років тому +19

      The universe would be dead before they finished, even if they made like one video a second. I assume.

    • @Nixitur
      @Nixitur 10 років тому +21

      ***** In fact, 3↑↑↑3 is _already_ unimaginably larger than the observable universe if you could store 1 bit in every planck volume. And that's not even G1!

    • @Wafflical
      @Wafflical 10 років тому +4

      Nixitur He was talking about time, but yeah.

  • @DonkeyHopper
    @DonkeyHopper 10 років тому +52

    This is the best video on Graham's Number by Numberphile. The earlier Graham's Number videos of Numberphile had been a bit confusing. Thanks... Thank you very much...!!!

  • @edancoll3250
    @edancoll3250 10 років тому +52

    Exponentiation is repeated multiplication. Tetration is repeated exponentiation. Penetration is repeated tetration.
    Intercourse is repeated penetration.

    • @asdf30111
      @asdf30111 10 років тому +11

      Pentation is not that close too Penetration but a good joke for these that are to slow to figure the incorrect prefix of pent (penet)

    • @Ovenman940
      @Ovenman940 10 років тому +11

      asdf30111 Do you go to parks and tell the children that Father Christmas doesn't exist?

    • @asdf30111
      @asdf30111 10 років тому +6

      Ovenman940 How do you know what I do on Tuesdays?

    • @rainetheplanet
      @rainetheplanet 6 років тому

      And sigulation is repeated intercourse

    • @davidhopkins6946
      @davidhopkins6946 5 років тому

      Now that's a sick joke if I ever saw one!

  • @sebyiuga2184
    @sebyiuga2184 10 років тому +11

    I don't know why everyone's complaining about this video. I think it was a great compacted summary of the Graham's Number series, and having it in a prepared format made it, at least to me, finally sink in.

  • @Draftgon
    @Draftgon 10 років тому +297

    Slightly too loud music but great explanation still.

    • @numberphile
      @numberphile  10 років тому +72

      sorry and thanks

    • @Draftgon
      @Draftgon 10 років тому +24

      Numberphile No worries Brady, your voice was still perfectly audibile and comprehensible (and that's me saying as a German haha).

    • @lereff1382
      @lereff1382 10 років тому +1

      Draftgon same :D

    • @42scientist
      @42scientist 8 років тому +3

      +Draftgon and me as a french

    • @Triantalex
      @Triantalex Рік тому

      false.

  • @unclvinny
    @unclvinny 10 років тому +171

    You like making Graham's Number videos *almost* as much as I like watching them. :-)

  • @lukebarker547
    @lukebarker547 10 років тому +37

    I personally LOVE the Graham's number videos. Although just TRYING to comprehend the size of that thing makes my head want to turn into a black hole. Great video once again!

    • @Wilzyy
      @Wilzyy 9 років тому +7

      If you could imagine Graham's Number in its entirety, your mind WILL turn into a black hole! XD

    • @vedantsridhar8378
      @vedantsridhar8378 Місяць тому

      ​@@Wilzyy Same could be said with 3^^^3 alone

  • @rlt152
    @rlt152 9 років тому +10

    Graham's Number is truly my favorite number, by the time you get to G2 the number of arrows in-between numbers is already greater that what you could fit in the entire Universe (even if 1 arrow was only 1 planck length in size) and from there it just escalates beyond any of our comprehension. It is really the largest number that I understand the reasoning behind (as opposed to just a really large number).

  • @ozmaphase2
    @ozmaphase2 10 років тому +3

    Ever since I was a child I have been obsessed with gigantic, ridiculous numbers, so every time I see Graham's number in the title, I must watch the video immediately. I love your channel!

  • @ronburgundy8031
    @ronburgundy8031 9 років тому +318

    I feel like I'm obligated to say something.

    • @j-r-m7775
      @j-r-m7775 3 роки тому +9

      I am glad you did. It needed to be said.

    • @Triantalex
      @Triantalex Рік тому

      do it then..

  • @HoudsonSmith
    @HoudsonSmith 10 років тому +61

    what is with the loud music?..

  • @Jombo1
    @Jombo1 8 років тому +268

    I invented a bigger number.
    G65.
    Fight me.

    • @RealClassixX
      @RealClassixX 8 років тому +72

      Congratulations. In what proof do you use that number?

    • @X-3K
      @X-3K 8 років тому +78

      I can do you one better
      G(G64))

    • @Chrnan6710
      @Chrnan6710 8 років тому +38

      +Sebastian Carrier no stop that's how you break the universe

    • @frustratingdiplomacy7319
      @frustratingdiplomacy7319 8 років тому +22

      Well guess what, I invented something bigger.
      G66.
      Fight me.

    • @cameronschiff132
      @cameronschiff132 8 років тому +13

      What if we do G(Graham's Number)?

  • @txikitofandango
    @txikitofandango 10 років тому +4

    I'm happy you guys finally used an example for double-arrows where the second number is NOT 3.

  • @973terminator
    @973terminator 9 років тому +180

    The background music is a bit too loud. It's almost distracting.

    • @robertdarcy6210
      @robertdarcy6210 9 років тому +4

      I agree

    • @DavidRichfield
      @DavidRichfield 9 років тому +9

      +973terminator I agree. +Numberphile : please don't do this again.

    • @drinkingthatkool-aid3193
      @drinkingthatkool-aid3193 8 років тому +4

      I thought it fight the video quite well, a bit loud but fitting.

    • @drinkingthatkool-aid3193
      @drinkingthatkool-aid3193 8 років тому

      +Moaiz Shahzad fit**

    • @twincast2005
      @twincast2005 8 років тому +7

      +973terminator I'd say it's way too loud. No idea what went wrong there. Can't have been intentional.

  • @tim..indeed
    @tim..indeed 9 років тому +215

    It could also be 13 tho

    • @Acsabi44
      @Acsabi44 8 років тому +23

      +Tim Fischer incorrect. Graham's Number is always that monstrosity explained in the video. The solution to the vertices problem, however, could be as low as 13. Or as high as Graham's Number.

    • @NoriMori1992
      @NoriMori1992 8 років тому +40

      +Acsabi44 That's pretty obviously what Tim meant.

    • @Bigassboya
      @Bigassboya 8 років тому +24

      +NoriMori
      Incorrect, that's completely obviously what Tim meant.

    • @tyronechickin1180
      @tyronechickin1180 7 років тому

      Bigassboya
      That's pretty unobviously what Nori meant

    • @rachel1215
      @rachel1215 6 років тому +1

      Uh what are yall talking about?

  • @KazimirQ7G
    @KazimirQ7G 10 років тому +4

    Thank you so much, Brady. I hadn't understand well when Ron Graham explained, but you made an excellent work. Very clear and fluid explanation. Comparing with number 10 made it much more clear to me. Keep doing this great job!

  • @Nekotamer
    @Nekotamer 10 років тому +25

    i just have to ask, what kind of practical uses does that number has or will have.

    • @yes-pc3pt
      @yes-pc3pt 2 місяці тому

      It's the solution to an equation

  • @drinkingthatkool-aid3193
    @drinkingthatkool-aid3193 8 років тому +27

    Each level you go down you roughly get 1/2 (log 3 to be exact) as many digits as the exponent of the number above.
    For example,
    3^3 = 27 --- 2 digits (close to half of 3)
    3^^3 = 7.6 trillion --- 13 digits (about half of 27)
    3^^4 = 3^7.6 trillion --- 3.6 trillion digits (about half of 7.6 trillion)
    3^^5 = 3^3.6 trillion digit number (on the order of 0.6 x 10^(3.64 trillion) DIGITS) --- which is about half of the actual value of the 3.6 trillion digit number.
    And so on until 3^^7,625,597,484,987.

    • @francescorende9987
      @francescorende9987 8 років тому +1

      OH...... MY...... TOSTITOS! luminardy canfeermed

    • @NavsangeetSingh
      @NavsangeetSingh 8 років тому +7

      That's a very interesting observation. Thanks for bringing it up.

    • @nickronca1562
      @nickronca1562 4 роки тому +2

      makes since since 3 is about the square root of 10

    • @innertubez
      @innertubez 2 роки тому

      Thanks, that’s cool. Does that mean that G64 has G32 digits? Or some other number?

  • @yes-pc3pt
    @yes-pc3pt 7 місяців тому +4

    1st arrow: 😃
    2nd arrow: 😐
    3rd arrow: 😰
    4th arrow: 💀

  • @Tursiopstruncatus
    @Tursiopstruncatus 9 років тому +70

    Just imagine G64! (Factorial)

    • @MatteoBlooner
      @MatteoBlooner 9 років тому +58

      Thats not even g(65)

    • @Sokobansolver
      @Sokobansolver 9 років тому +19

      Imagine TREE(G64)

    • @MatteoBlooner
      @MatteoBlooner 9 років тому +4

      Tree(64) doesnt exist

    • @TheStellaruniversexm
      @TheStellaruniversexm 9 років тому +4

      Superblooner1 Yes, it does. But it would mean blowing up an already insanely large number to even larger proportions, and TREE(TREE(TREE(...TREE(G64))...)) would be about as close you could get to infinity.
      G64 TREEs

    • @evanoc
      @evanoc 9 років тому +3

      ***** Well, you could always do TREE(G64) + 1...
      Or better yet, TREE(G65)!
      Maybe even TREE(G99999999999999999999999999999)...

  • @9Jov
    @9Jov 10 років тому +197

    I swear this is like the 4th time I've seen an explanation for Graham's Number. It's getting a bit redundant.

    • @hellothing
      @hellothing 6 років тому +1

      AlphaBetaGamma it says 16 replies for me and i only see yours xD

    • @vedantsridhar8378
      @vedantsridhar8378 3 місяці тому

      G0-th time lol

  • @hamburgersteo2k10
    @hamburgersteo2k10 10 років тому +9

    Isn't it actually impossible to imagine Graham's number? I remember hearing that the human mind can only contain 10 to the power of 10 to the power of 75 bits of information...

  • @XGamersGonnaGameX
    @XGamersGonnaGameX 9 років тому +6

    To people who are trying to compare this to things in the universe, It doesn't matte how small a length in how large a universe in however many dimensions or whatever.
    There is a reason they came up with arrow notation and the G1 G2 notations, they did this becuase there is literally no way of expressing these numbers with multiplication(ie taking values of small lengths and comparing to larger)/exponents(more dimentions)/tetration(google^google google times) because for every arrow you add you just go up another one of these mathematical operations. and there is G1 up arrows just in G2.
    So just stop trying to make comparisons to anything within the universe because it doesn't matter how much time you spend advancing your analogies, unless you use a system as ridiculous as the up arrow/ g1,g2,g3 systems you will NEVER reach these numbers.

    • @AlexsMemeDump
      @AlexsMemeDump 8 років тому +1

      Yeah, to add to this: The plank volume, the smallest possible volume in quantum mechanics, would only fit inside the entire observable universe 10^185 times

    • @vedantsridhar8378
      @vedantsridhar8378 4 місяці тому

      Yeah, even 3^^^3 is way too large to be compared to anything in the universe

  • @ShonkyLegs
    @ShonkyLegs 10 років тому +1

    I'm actually really glad you posted another video about this, Brady. For me, trying to get my head to really imagine this is a fun part of Math that I have not experienced in a while.
    I think there is a real benefit to having people understand the real limits to perception and imagination, and the constructs clever people have come up with to allow us to play with these unimaginable values.
    Thanks again, Brady.

  • @nerdbot4446
    @nerdbot4446 10 років тому +3

    Graham´s Monster just took my mind and climbed on the top of its power tower where I can not reach it. And just because you, Brady, unleashed it!

  • @MatteoBlooner
    @MatteoBlooner 9 років тому +52

    Do a video on TREE(3)!

    • @pokefan1003
      @pokefan1003 9 років тому +7

      +Superblooner1 I agree with you here. I really don't understand anything on it but I'm fascinated by these large numbers.

    • @uchihamadara6024
      @uchihamadara6024 8 років тому +5

      Apparently it's such a big number that it's difficult to explain, it's difficult to even explain the notation of it

    • @Acsabi44
      @Acsabi44 8 років тому +12

      but it is such a fun number. TREE(2) is like 3, then suddenly, BAM, TREE(3) happens

    • @rooksman64
      @rooksman64 7 років тому

      Yesssss pleaseeee

    • @davecrupel2817
      @davecrupel2817 7 років тому

      challenge accepted.

  • @brfisher1123
    @brfisher1123 8 років тому +12

    Incredible, I often wonder how huge just 3↑↑↑3 would be if it was possible to calculate a power tower 7,625,597,484,987 threes high!
    Picture this:
    3↑↑2=27
    3↑↑3=7,625,597,484,987
    3↑↑4=1.258014298121x10^3,638,334,640,024 (notice how the number skyrockets just by adding ONE 3!)
    Now try to imagine (if you can) how big 3↑↑↑3 (3↑↑7,625,597,484,987) must be if just the first 3s at the very top are already giving us massive numbers! The numbers from 3↑↑↑3 onwards are truly unimaginable!

    • @darknessbr3209
      @darknessbr3209 5 років тому

      How did you reach that 3^^4 result? (I don't know how to write these arrows)

    • @brfisher1123
      @brfisher1123 4 роки тому

      @@darknessbr3209 I didn't, it's said that 3↑↑4 or 3^7,625,597,484,987 equals that ridiculously massive number (1.258014298121x10^3,638,334,640,024), now how they were able to calculate that is beyond me lol

  • @despectable
    @despectable 6 років тому +1

    The best video I have seen so far dealing with Graham's Number...

  • @Twisty543
    @Twisty543 8 років тому +80

    2:10 "Again, if the trailing number had been Satan"
    O.o

  • @AttackPenguin666
    @AttackPenguin666 8 років тому +30

    Graham's number thinks it's pretty big but it's too small to comprehend compared to the amount of real numbers between 0 and (1/Graham's Number)

    • @AttackPenguin666
      @AttackPenguin666 8 років тому

      Privilege Wales not Whales :P but da vohl

    • @ThinYellow
      @ThinYellow 8 років тому +2

      You might as well make real -> rational on your comment.

    • @joshsvoss
      @joshsvoss 4 роки тому +1

      This comment should be higher. Mind bending

  • @dwc1970
    @dwc1970 10 років тому +4

    I like the piano background music; it adds a nice touch.

  • @PRIMUSALDA
    @PRIMUSALDA 10 років тому +1

    Im glad you made a follow-up explanation just for the magnitude.
    Thanks, nicely done

  • @friendgray1
    @friendgray1 10 років тому +3

    I've really enjoyed your mini-series on Graham's number. Trying to imagine it really puts the concept of infinity into perspective for me; even G64 is infinitely small compared to infinity!

  • @ChukapiMagnetar
    @ChukapiMagnetar 4 роки тому +1

    I believe my brain is beyond Graham's porridge...

  • @mac1991seth
    @mac1991seth 10 років тому +5

    I think I reached Graham's Number in Cookie Clicker.

  • @gandlebot
    @gandlebot 10 років тому

    This is the third or fourth video on Graham's number. And each time, I've either learned something new, or gained just a bit more appreciation for just how big it truly is. Absolutely loving the series. But yes, I agree with some other comments, I wouldn't mind a new topic soon either.

  • @stevec9470
    @stevec9470 2 роки тому +3

    Even the multiverse is drown with number of digits in G1.

    • @vedantsridhar8378
      @vedantsridhar8378 Місяць тому

      If you were to write down all the number of arrows in G1, the arrow chain will stretch from me to a parallel universe where my crush is dating me and beyond.

  • @davidgillies620
    @davidgillies620 7 років тому +2

    Probably the most mind-blowing thing for me is that we can calculate the trailing digits of Graham's number. It ends in a 7.

  • @Pjaypt
    @Pjaypt 9 років тому +7

    i'm gonna quit takin' LSD and start studyn' big numbers, it's a bigger trip!

  • @Aziraphale686
    @Aziraphale686 8 років тому

    After watching many videos on this topic I think I finally understand the entire process now. Thanks! Your ability to explain complex topics to us plebs is a welcome talent.

  • @DaviddeKloet
    @DaviddeKloet 10 років тому +14

    Please don't put music on talking videos. Trying to listen to your voice and ignore the music makes my brain hurt and I had to skip.

    • @merciadragon9425
      @merciadragon9425 10 років тому +4

      I know what you mean it made me feel nauseated.

  • @ayushkumarjha9921
    @ayushkumarjha9921 2 роки тому +1

    Still remember the time when I first learn about a number called Trillion and that blown my mind and here are we now with Graham's number, TREE(3)...etc

  • @liamh3226
    @liamh3226 10 років тому +12

    Still a better love story than twilight.

  • @brianpso
    @brianpso 10 років тому

    I'm liking the way you are narrating the videos now. Your explanations most times are really good to make us understand the subject from another point of view, like in the Monty Hall problem videos.

  • @jcmaloney2124
    @jcmaloney2124 9 років тому +47

    It's over 9000!

    • @ardenvarley-twyman8352
      @ardenvarley-twyman8352 8 років тому +11

      It's WAY over 9000.

    • @aceman0000099
      @aceman0000099 8 років тому +7

      its _slightly_ over 9000

    • @JaySay
      @JaySay 8 років тому +4

      +aceman0000099 Compared to infinity? Yeah, you're right.

    • @KamZero
      @KamZero 8 років тому +5

      Well 9000! is 9000 factorial (9000 * 8999 * 8998...* 2 *1) which is pretty pretty big at around 1 followed by 15,846 digits.

    • @3453-p9d
      @3453-p9d 8 років тому

      +Kam Zero its still over 9000!

  • @redvine1105
    @redvine1105 5 років тому +1

    Replace the “3” in Graham’s number with “1” and all of a sudden it becomes a lot less impressive

  • @moth.monster
    @moth.monster 9 років тому +8

    G64? I prefer C64.

  • @IAmMyOwnApprentice
    @IAmMyOwnApprentice 10 років тому

    "This is such a big number that two to that power and that power are kind of hard to distinguish."
    One of the most boss things I've ever heard here.

  • @moff181
    @moff181 10 років тому +4

    Someone, one day, needs to get a super computer to plot these numbers on a bar chart.

    • @dizont
      @dizont 10 років тому

      lets say 1 number is 1x1cm, i think the whole surface of the earth wouldnt be enough for this number

    • @ShadowCjreek
      @ShadowCjreek 10 років тому +7

      Ergo Proxy As far as I know there aren't even enough planck volumes in the (observable) universe to write a googolplex down if you write a digit per planck volume. And Grahams number is just SO much larger than a googolplex.

    • @dizont
      @dizont 10 років тому

      Cjreek wow that is some revelation, thanks :D

    • @tggt00
      @tggt00 10 років тому

      Ergo Proxy I don't think the entire galaxy would even fit.. probably bigger than the whole observable universe...

    • @moff181
      @moff181 10 років тому +1

      Probably, but if we did it across multiple universes, it might fit.

  • @words_infinite
    @words_infinite 10 років тому +1

    Every time I watch a video like this, I understand a bit more of how big Graham's Number is. Now I realize that even if you measured the diameter of the observable universe (estimated to be 93 billion light-years (approx. 8.7982914e+23 kilometers)) in planck distance (1.616199×10^−35 meters), the number you come up with (I came up with 1.421979e+62 not sure if that is right or even close) would not be as big as Graham's number. That is crazy. I feel like it doesn't even compare with G1. I really like thinking about it.

  • @chuckmanofgod
    @chuckmanofgod 9 років тому +6

    Now imagine if you went up a "Graham's Number" of times instead of 64 times, as in G(G64)!!!!

    • @as7river
      @as7river 3 роки тому

      Rayo(TREE(G64)) is about the largest number I want to think about.

    • @gpt-jcommentbot4759
      @gpt-jcommentbot4759 2 роки тому

      @@as7riverf(Rayo(BB(D(SSCG(TREE(G(32!))))))) (f is Large Number Garden Number function)

  • @dsvaisakh
    @dsvaisakh 8 місяців тому +2

    You mark a scale from 0 to 100 where 100 is infinity, Graham's Number still be very close to zero.

  • @JoeyPsych
    @JoeyPsych 10 років тому +4

    It seems like 64 is such an arbitrary number, if it is the largest imaginable number, than why not up it one more, make it G65, than it's an even bigger number. Why stop there? Why not continue till you have something like G64G64 (or something) I mean we could do this into infinity, so why just 64?

    • @Nixitur
      @Nixitur 10 років тому +34

      It's not at all the largest imaginable number. The important part is that this number was used in a proof and Graham had to account for _every step_.
      He had to argue that G63 might not be enough, but that G64 is _definitely_ enough.

    • @MobiusCoin
      @MobiusCoin 10 років тому +28

      Because it's used to calculate something specific. He's not just making up big numbers for fun.

    • @laurenhatfield4983
      @laurenhatfield4983 10 років тому

      What is that specific thing

    • @Nixitur
      @Nixitur 10 років тому +15

      Lauren Hatfield
      Dascription - Sandread

    • @JoeyPsych
      @JoeyPsych 10 років тому +1

      Nixitur
      Thanks, that crealified it.

  • @Pining_for_the_fjords
    @Pining_for_the_fjords 8 років тому +2

    The amazing thing is, in the original problem involving coloured lines and higher dimensions, Graham's number describes a theoretical number of spacial dimensions. We can't even properly imagine a fourth spacial dimension, and a fifth and sixth sound even more crazy. How in the world are we supposed to make sense of Graham's number of spacial dimensions?

  • @pragha1
    @pragha1 8 років тому +12

    G63 is such a small number compared to G64!

    • @sohee7597
      @sohee7597 5 років тому +3

      Watch out when u use ! symbol in a math comment xD

    • @r.a.6459
      @r.a.6459 5 років тому

      Try G65.
      And yes, be careful when using '!'. Much worse, like '!!' or '!!!'
      Because '!!' itself can mean:
      - Double factorial, n!! = n(n-2)(n-4)...3.1 if n is odd
      n!! = n(n-2)(n-4)...4.2 if n is even
      - Nested double factorial, (n!)!
      Double factorial grows slower than factorial itself.
      5!! = 5.3.1 = 15
      While nested double factorial grows much much much faster.
      (5!)! = 120! = **196 digits long**

    • @vedantsridhar8378
      @vedantsridhar8378 4 місяці тому

      ​@@r.a.6459 Try GG64. Or G....G64 with G64 Gs!

    • @r.a.6459
      @r.a.6459 4 місяці тому

      @@vedantsridhar8378
      try (((...((GG...GG64)!)!)!)!)...)!)!)! with G64 'G's and G64 '!'

  • @GlobalWarmingSkeptic
    @GlobalWarmingSkeptic Рік тому +1

    One other way to look at this is that, even given how massive Graham's Number is, adding just 1 more arrow, not even G64 arrows, just 1 arrow, makes Graham's Number look like it's absolutely nothing.

  • @HowToVideos
    @HowToVideos 10 років тому +4

    *Has anyone ever heard of SALTS number ?*

  • @cisco4766
    @cisco4766 4 роки тому +2

    The difference between G64 and G63 is mindblowing. If you were to multiple G63 with all subsequent numbers working downwards to G1, you would still be no where close to how big G64 is.

    • @vedantsridhar8378
      @vedantsridhar8378 4 місяці тому

      Yeah, it's like comparing 4 and G1, and that's also an understatement.

  • @TiagoMorbusSa
    @TiagoMorbusSa Рік тому +4

    Soundtrack too loud, can't maths.

  • @chrislarson5097
    @chrislarson5097 10 років тому +1

    I know I'm a nerd because my heart was pounding by the end of the video. OMG, what's wrong with me. I'm in shock.

  • @GuiltyGearRockYou
    @GuiltyGearRockYou 10 років тому +3

    It's still way smaller than "Marc's Number"
    ;))))))

    • @wtfbro959
      @wtfbro959 6 років тому

      Melodic Guitar Rock/Metal GuiltyGearRockYou and way smaller then my number

    • @Xnoob545
      @Xnoob545 6 років тому +1

      And there are stupidly larger numbers than Rayo's number

  • @elliotmortimer6738
    @elliotmortimer6738 Рік тому

    This channel is blowing my mind and reinvigorating my passion for maths.
    Cheers!

  • @wasd2333
    @wasd2333 8 років тому +4

    How about
    G repeated G64 times.... then finally 64
    so.. GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG.....etc etc G64.

    • @alaamroue
      @alaamroue 8 років тому +2

      this is approximately equal to g64 but still less than g65

    • @awes0meguy13
      @awes0meguy13 8 років тому +2

      Or G(G(G ... (G64)...) repeated G64 times :o

  • @morlath4767
    @morlath4767 10 років тому

    Now it makes sense. I kept getting lost on how to break out the arrows into the lines but you explained it perfectly, Brady.

  • @DanielBrownsan
    @DanielBrownsan Рік тому +3

    The music makes me stabby.

  • @AlexxxGrrr
    @AlexxxGrrr 9 років тому +1

    brain.exe has stopped working at about 5:00

  • @qorilla
    @qorilla 10 років тому +5

    Why this obsession with 3? Why not 2? I like 2.

    • @DonkeyHopper
      @DonkeyHopper 10 років тому +7

      Because 3 takes it to Graham's Number.

    • @qorilla
      @qorilla 10 років тому +1

      Hah, it's funny. It actually doesn't work much with 2. You can use any number of arrows, trillions if you wish, the result will be still just 4 :D
      Pretty interesting.

    • @oscarsmith3942
      @oscarsmith3942 10 років тому +1

      for the more technical answer we turn to Wikipedia
      "In 1971, Graham and Rothschild proved that this problem has a solution N*, giving as a bound 6 ≤ N* ≤ N, with N being a large but explicitly defined number , where in Knuth's up-arrow notation; the number is between 4 → 2 → 8 → 2 and 2 → 3 → 9 → 2 in Conway chained arrow notation.[2] This was reduced in 2013 via upper bounds on the Hales-Jewett number to .[3] The lower bound of 6 was later improved to 11 by Geoff Exoo in 2003,[4] and to 13 by Jerome Barkley in 2008.[5] Thus, the best known bounds for N* are 13 ≤ N* ≤ N'.
      Graham's number, G, is much larger than N: , where . This weaker upper bound for the problem, attributed to an unpublished work of Graham, was eventually published and named by Martin Gardner in Scientific American in November 1977."

    • @dbztitan
      @dbztitan 10 років тому

      qorilla Based on what this video describes, I would say that's accurate. However, despite all the videos that have been posted, that hasn't been made explicitly clear using the power of 2. I would've thought 2^2 would be 4, 2^^2 would be 16, 2^^^2 would be 2^2 with 16 2's in the stack (well past a standard calculator), and so on. But if the end digit refers only to the stack height, it would only ever be 2 and therefore 4 is as big as it would get.

    • @Greynwolf
      @Greynwolf 10 років тому

      Kevin Anderson I guess Im more ov a visual learner, because I still dont see how 2 doesnt work for this.

  • @tigerbalmks
    @tigerbalmks 10 років тому

    Graham's number is so wonderful. perhaps a whole CHANNEL devoted to it!

  • @James-gr1jo
    @James-gr1jo 10 років тому +5

    I can think of a bigger number, Graham's Number + 1 :-D
    But seriously I've watched all the Graham's Number videos and have never been able to comprehend past G2

    • @skuj2
      @skuj2 10 років тому

      well i bet with u that u cant think of it haha

    • @James-gr1jo
      @James-gr1jo 10 років тому

      Said I can think of a bigger number not that I could comprehend it...

    • @QuannanHade
      @QuannanHade 10 років тому +3

      James Herd As Ron Graham said in his video - G64 is so massive that even doubling it doesn't really make it any bigger. Adding 1 to G64 isn't really any bigger than G64.

    • @MrStitchiness
      @MrStitchiness 10 років тому

      Graham's number is important because it was for a time the biggest number that was used constructively in a mathematical proof. Adding one is well and all, but you have to show how it got there...Grahams number actually accounts for all those arrows and G1-G64 ridiculousness.
      ...the +1 would probably not be on the wedding invite, sadly.

  • @Xeverous
    @Xeverous 8 років тому +3

    Background music is awful and too loud

  • @BitcoinMotorist
    @BitcoinMotorist 10 років тому +2

    Ian Malcolm on Graham's number, "That is one big pile of numbers."

  • @elandres83
    @elandres83 10 років тому +3

    is there an SIMPLE way to explain why G64 is the upper bound to the SIMPLE line color problem?
    thanks for the great video 😃

  • @MogaTange
    @MogaTange Рік тому +1

    My favourite thing about it is that I don’t have to worry about prime factors. It’s all 3.

  • @ioncasu1993
    @ioncasu1993 9 років тому +6

    i give u 10 $ if u calcutale sin(G64). I can even tell u its between -1 and 1, so its very easy.

    • @felipevasconcelos6736
      @felipevasconcelos6736 9 років тому +16

      I only calculate it for at least $G64

    • @DaffyDaffyDaffy33322
      @DaffyDaffyDaffy33322 8 років тому +1

      +Michael Dunne How do you figure that sort of thing out?

    • @Aruthicon
      @Aruthicon 8 років тому

      +345 345 I think he meant how he figured out the sine of G64, not how sine itself works.

    • @LillianWinterAnimations
      @LillianWinterAnimations 8 років тому

      +ProgHead777 Not really. The server would get an overflow error and stop at 9.999e100

    • @anticorncob6
      @anticorncob6 8 років тому

      But what if you´re working in radians?

  • @cjcarrizo42
    @cjcarrizo42 2 роки тому

    That comparison at the end gives me chills. G64 and 2^G64 are practically the same thing

  • @SimonFoster63
    @SimonFoster63 10 років тому +4

    Great but I would lose the "10"s (they add nothing to the understanding) and shoo the cat off the piano.

  • @TheSpearkan
    @TheSpearkan 2 роки тому +1

    Apeirophobia: Fear of infinity and uncountably large numbers.

  • @samramdebest
    @samramdebest 10 років тому +5

    is this bigger than Graham's Number?googolplex↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑googolplex

    • @samramdebest
      @samramdebest 10 років тому

      ***** how about googolplex↑↑↑...↑↑↑googolplex with a googolplex↑

    • @SkyRipzScar
      @SkyRipzScar 10 років тому +14

      samramdebest I don't think you're understanding the sheer size of these numbers... G10 probably makes your googolplex(googolplex arrows)googolplex look minuscule.

    • @samramdebest
      @samramdebest 10 років тому +3

      SkyRipzScar but googolplex is so much bigger than 3 so the arrows escalate even quicker, can you prove that this number is smaller than Graham's Number?

    • @dbztitan
      @dbztitan 10 років тому +26

      samramdebest Not our job to prove your number is smaller, it's your job to prove your number is larger. However, I can tell you with near absolute certainty that SkyRipz is correct. Even G2 or G3 is probably larger than your number, which also has no known usability in mathematics.

    • @whydontiknowthat
      @whydontiknowthat 10 років тому

      yes

  • @raymondstheawesome
    @raymondstheawesome 10 років тому +1

    I have the exact value of Gram's number for which the comment's section is too small to contain.

  • @vantarinitel
    @vantarinitel 10 років тому

    Braingasm!!
    As for "what is this used for?" I use it all the time. This thing is a *quantifiable* amount that is larger than the Planck Units of the universe. Which is *huge*--and yet smaller than infinity.
    Now with that in mind, measure anything else and things look totally different.
    When asked "what's your favorite number?" I tell people it's this.
    I

    • @wewladstbh
      @wewladstbh 9 років тому

      10^170 is many trillions of trillions of times larger than the number of Planck volumes in the universe, and computers can use it, and I can write it on a A5 sheet of paper, it's not really that large of a number

  • @grandexandi
    @grandexandi 10 років тому

    Graham's number is approximately the number of videos about Graham's number that have been put out by Numberphile in the last week.

  • @agradman
    @agradman 6 років тому

    Thank you for making this video! It is the perfect preface to your other Graham's number videos.

  • @sanfranpunk
    @sanfranpunk 10 років тому

    I do love how you almost used Matt Parkers words, word for word. The visuals used were very helpful. My favorite part of all of this though, Mr. Graham's humble attitude towards the number itself and his 'discovery' of the computing method to describe such an inhumane number of recognition. The sheer description of it's vastness is described by one phrase... ... Meh, my mind is mush.

  • @CaptainPeterRMiller
    @CaptainPeterRMiller 9 років тому

    Brady, fantastic presentation on Graham's Number. It's quite astonishing.! I felt the audio mix was heavy handed. The particular audio frequencies were annoying for me. I persisted but this is just to let you know it wasn't your best. Keep on. and well done..

  • @severedize
    @severedize 10 років тому

    My head hurts more now, I found this version easier to not comprehend Grahams number, cheers Brady;)

  • @Afgnwrlrd
    @Afgnwrlrd 10 років тому +1

    Cool, but a little long. Keep up the work! Really appreciate it!

    • @vedantsridhar8378
      @vedantsridhar8378 2 роки тому

      It's long because that way it gives you enough time to understand the true largeness of that number.

  • @JupitersDancer
    @JupitersDancer 10 років тому

    Had to watch about 4 times videos about Graham's number on your channel to start to understand it...
    I'll get there...
    Thanks anyway !

  • @emibulls
    @emibulls 10 років тому

    Thanks for breaking that down, and now I'm mind is officially blown!

  • @vedantsridhar8378
    @vedantsridhar8378 4 місяці тому

    3^^^^3 is just so crazy large, I actually find it very comedic. Cannot imagine what a number with that many arrows would be like. If you could live forever, counting to Graham's Number would sure as hell be the most frustrating challenge ever.

  • @MarkKeightley
    @MarkKeightley 10 років тому +1

    I don't know about anyone else, but I think that 7.6 trillion is beyond human comprehension, let alone something like G1 as described here.
    But as I once said...
    "Such figures are utterly beyond human understanding, they are completely outside of the scale we can perceive. However such things are not beyond the limits of human imagination. Nothing is beyond that"