Distributed Training with PyTorch: complete tutorial with cloud infrastructure and code

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 72

  • @КириллКлимушин
    @КириллКлимушин 7 місяців тому +4

    This is second video Ive watched from this channel after "quantization". And frankly wanted to express my gratitude towards your work as it is very easy to follow and the level of abstractions is tenable to understand concepts holistically.

  • @thinhon54
    @thinhon54 Місяць тому +6

    This is the best video about Torch distributed I have ever seen. Thanks for making this video!

  • @abdallahbashir8738
    @abdallahbashir8738 7 місяців тому +6

    I really love your vidoes. you have a natural talent on simplifying logic and code. in same capacity as Andrej

  • @chiragjn101
    @chiragjn101 11 місяців тому +9

    Great video, thanks for creating this. I have use DDP quite a lot but seeing the visualizations for communication overlap helped me build a very good mental model.
    Would love to see more content around distributed training - Deepspeed ZeRO, Megatron DP + TP + PP

  • @normxu3448
    @normxu3448 22 дні тому +1

    Thank you for the tutorial. It is really helpful to learn beyond pytorch documentations.

  • @rachadlakis1
    @rachadlakis1 2 місяці тому +1

    That's an amazing resource! It's great to see you sharing such detailed information on a complex topic. Your effort to explain everything clearly will really help others understand and apply these concepts. Keep up the great work!

  • @jiankunli7148
    @jiankunli7148 2 місяці тому

    Great introduction. Love the pace of the class and the balance of breadth vs depth

  • @amishasomaiya9891
    @amishasomaiya9891 6 місяців тому +2

    Starting to watch my 3rd video on this channel, after transformer from scratch and quantization. Thank you for the great content and also for the code and notes to look back again. Thank you.

  • @nithinma8697
    @nithinma8697 2 місяці тому

    Umar hits the sweet spot (Goldilocks zone) by balancing theory and practical😄😄😄😄😄

  • @tharunbhaskar6795
    @tharunbhaskar6795 4 місяці тому +1

    Dang. Never thought learning DDP would be this easy. Another great content from Umar. Looking forward for FSDP

  • @pulkitnijhawan653
    @pulkitnijhawan653 2 місяці тому +1

    Amazing video. Ideal video of how a lecture on a video should be

  • @karanacharya18
    @karanacharya18 6 місяців тому +2

    Super high quality lecture. You have a gift of teaching, man. Thank you!

  • @vasoyarutvik2897
    @vasoyarutvik2897 6 місяців тому +2

    this channel is hidden gem

  • @МихаилЮрков-т1э
    @МихаилЮрков-т1э 10 місяців тому

    The video was very interesting and useful. Please make a similar video on DeepSpeed functionality. And in general, how to train large models (for example LLaMa SFT) on distributed systems (Multi-Server) when GPUs are located on different PCs.

  • @thuann2cats
    @thuann2cats 3 місяці тому +1

    absolutely amazing! You made these concepts so accessible!

  • @Maximos80
    @Maximos80 3 місяці тому +1

    Incredible content, Umar! Well done! 🎉

  • @oliverhitchcock8436
    @oliverhitchcock8436 11 місяців тому +3

    Another great video, Umar. Nice work

  • @wangqis
    @wangqis Місяць тому +1

    非常清楚的解释~

  • @joeyhuang5738
    @joeyhuang5738 5 днів тому +1

    Awesome tutorial!

  • @hu6u-l8c
    @hu6u-l8c 11 місяців тому +2

    Thank you very much for your wonderful video. Can you teach a video on how to use the accelerate library with dpp?

  • @cken27
    @cken27 11 місяців тому +3

    Amazing content! Thanks for your sharing

  • @maleekabakhtawar3892
    @maleekabakhtawar3892 3 місяці тому

    well explained each and every detail, Great work Great Explanation👍
    can you make this type of detailed video on distributed training through tensor parallelism? it would be very helpful. Thank you!

  • @nova2577
    @nova2577 9 місяців тому +1

    You deserve many more likes and subscribers!

  • @Engrbilal143
    @Engrbilal143 8 місяців тому

    Awesome video. Please make tutorial on FSDP as well

  • @arpitsahni4263
    @arpitsahni4263 2 місяці тому

    thanks for the video!! can you cover the Tensor, Sequence and Pipeline Parallel and D using Dtensors in Pytorch next?

  • @thejasonchu
    @thejasonchu 2 місяці тому +1

    Great work! thank you !

  • @prajolshrestha9686
    @prajolshrestha9686 10 місяців тому +1

    Thankyou so much for this amazing video. It is really informative.

  • @vimukthirandika872
    @vimukthirandika872 3 місяці тому +1

    Really impressive!

  • @mdbayazid6837
    @mdbayazid6837 11 місяців тому +1

    Federated learning basics please.❤

  • @AtanuChowdhury-d6o
    @AtanuChowdhury-d6o 8 місяців тому +1

    very nice and informative video. Thanks

  • @madhusudhanreddy9157
    @madhusudhanreddy9157 10 місяців тому

    If time permits for you, Please make an video for entire GPU and TPU and how to them effectively and most of us donno .
    please create a playlist for pytorch for beginners and intermediates.
    Thanks for reading.

  • @riyajatar6859
    @riyajatar6859 8 місяців тому +1

    In broadcast , if we are sending the copy of file from rank 0 and rank 4 node to other node. How is the total time still 10 second. Because still I am having same internet speed of 1MB/s.
    Could anyone explain? I am bit confused.
    Also what happens if I am having odd numbers of nodes

  • @810602jay
    @810602jay 11 місяців тому +1

    Amazing learning stuff ! Very Thanks !~ 🥰🥰🥰

  • @mandarinboy
    @mandarinboy 9 місяців тому

    Great intro video. Do you have any plans to also cover other parallelism: Model, Pipeline, Tensor, etc.

  • @manishsharma2211
    @manishsharma2211 11 місяців тому +1

    you teach soooooooo good

  • @loong6127
    @loong6127 8 місяців тому +1

    Great video

  • @svkchaitanya
    @svkchaitanya 4 місяці тому +1

    You rock always 😂

  • @felipemello1151
    @felipemello1151 6 місяців тому +1

    I wish i could like it twice

    • @umarjamilai
      @umarjamilai  6 місяців тому

      You can share it on social media. That's the best way to thank me 😇

    • @felipemello1151
      @felipemello1151 6 місяців тому

      @@umarjamilai not sure if it’s in your plans, but if you are open to suggestions, I would love to watch a video on multimodal models. Again, awesome work!

    • @umarjamilai
      @umarjamilai  3 місяці тому

      Check my latest video!

  • @khoapham7303
    @khoapham7303 11 місяців тому +2

    I'm always confused with DP and DDP. Can you please tell me the difference between them? While both of them belong to data parallelism method.

    • @umarjamilai
      @umarjamilai  11 місяців тому +6

      DP only works on a single machine, while DDP can work on multiple machines. However, PyTorch now recommends using DDP also for single-machine setup.

    • @khoapham7303
      @khoapham7303 11 місяців тому

      @@umarjamilai thank you for your reply

  • @d.s.7857
    @d.s.7857 11 місяців тому +1

    Thank you so much for this

  • @ramprasath6424
    @ramprasath6424 11 місяців тому +1

    please do some thing related to audio large models like conformers,quartznet ,etc

  • @SaurabhK9012
    @SaurabhK9012 3 місяці тому

    Please create a video on model parallelism and FSDP.

  • @madhusudhanreddy9157
    @madhusudhanreddy9157 10 місяців тому

    Hi Umar, Great video and enjoyed thorughly but i have one question.why are we using the approach of sum(grad1+grad2+....+gradN), why cant we use Avg of Gradients.

    • @umarjamilai
      @umarjamilai  10 місяців тому +2

      Of course you can (but you don't have to) use the average of the gradients. Actually, people usually take the average of the gradients. The reason we use the average is because we want the loss to be (more of less) the same as the non-distributed model, so you can compare the plots of the two. I don't know if PyTorch internally automatically takes the average of the gradients, I'd have to check the documentation/source.

    • @madhusudhanreddy9157
      @madhusudhanreddy9157 10 місяців тому

      @@umarjamilaithanks for the info.

  • @YashSharma-c4f
    @YashSharma-c4f 8 місяців тому +1

    fantastic

  • @rohollahhosseyni8564
    @rohollahhosseyni8564 8 місяців тому +1

    great video

  • @hellochli
    @hellochli 10 місяців тому +1

    Thanks!

    • @umarjamilai
      @umarjamilai  10 місяців тому

      谢谢你!我们在领英connect吧

  • @sajjadshahabodini
    @sajjadshahabodini Місяць тому +1

    thanks

  • @tryit-wv8ui
    @tryit-wv8ui 11 місяців тому

    another banger

  • @코크라이크
    @코크라이크 6 місяців тому

    could provide another videos with respect to model parallel and pipeline parallel ? thanks..

  • @waynelau3256
    @waynelau3256 6 місяців тому

    Working with fsdp and megatron now and I really want to figure this out from scratch haha, it sounds fun but a big headache

  • @Yo-rw7mq
    @Yo-rw7mq 7 місяців тому +1

    Great!

  • @sounishnath513
    @sounishnath513 11 місяців тому +1

    SUUUPERRRR

  • @ai__76
    @ai__76 6 місяців тому

    How to do in Kubernetes? Please explain it.

  • @Erosis
    @Erosis 11 місяців тому

    Wouldn't the accumulated gradient need to be divided by the total number of individual gradients summed (or the learning rate needs to be divided by this value) to make it equivalent?

    • @umarjamilai
      @umarjamilai  11 місяців тому +2

      Yes, if you want to treat the "cumulative gradient" as a big batch, then you'd usually divide it by the number of items to keep it equivalent to the single-item setup. But it's not mandatory: as a matter of fact, loss functions on PyTorch have a "reduction" parameter, which is usually set to "mean" (so dividing the loss by the number of items) but can also be set to "sum".
      One reason we usually calculate the "mean" loss is because we want to make comparisons between models with different hyperparameters (batch size), so the loss should not depend on the batch size.
      But remember that mathematically you don't have to

  • @milonbhattacharya4097
    @milonbhattacharya4097 9 місяців тому

    shouldnt loss be accumulated ? loss += (y_pred - y_actual)^0.5

    • @LCG-f8w
      @LCG-f8w 9 місяців тому

      In my understanding, yes the loss is accumulated for one batch theoretically, and the gradients are computed based on this accumulated loss too. But in the parallel implementation, both the loss calculated in the feedforward process, and the gradients calculated in the back propagation process executed in a parallel way. Here @umarjamilai use a for loop to illustrate the de facto parallel mechanism.

  • @DiegoSilva-dv9uf
    @DiegoSilva-dv9uf 2 місяці тому

    Valeu!

  • @jiemao-v4l
    @jiemao-v4l 11 місяців тому

    do you have a discord channel?

  • @eriboyer2229
    @eriboyer2229 2 місяці тому

    21:01

  • @Allen-TAN
    @Allen-TAN 11 місяців тому +1

    Always great to watch your video, excellent work

  • @xugefu
    @xugefu Місяць тому

    Thanks!

  • @DiegoSilva-dv9uf
    @DiegoSilva-dv9uf Місяць тому

    Valeu!