Tutorial 49- How To Apply Naive Bayes' Classifier On Text Data (NLP)- Machine Learning

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 151

  • @hemantdas9546
    @hemantdas9546 4 роки тому +23

    Sir at 9:02 it should be 2/2 and not 2/4. Because we have to consider only yes cases. Please clarify if I am wrong.

    • @sonusingh-hj2dw
      @sonusingh-hj2dw 4 роки тому +1

      yes
      you are right
      i thought the same

    • @pavanidubey3399
      @pavanidubey3399 4 роки тому +1

      yes even I think the same

    • @siddharthdedhia11
      @siddharthdedhia11 4 роки тому +1

      Its correct. 2 times yes when food is present / total # of times food is present

    • @tanvishinde805
      @tanvishinde805 4 роки тому

      yes i think the same , but in that case P(Bad | yes ) = 0 and so the whole term P(yes | sentence1) = 0 , so this should not happen

    • @sarsizchauhan8948
      @sarsizchauhan8948 4 роки тому

      ​@@tanvishinde805 He's considering sent1 as an example and not that BOW matrix. In sent1 three words are present, so only those features would be considered to calculate the probability.
      If sent has both delicious and bad words present then it won't give definitive o/p, which he should've explained.

  • @soowoonchung5607
    @soowoonchung5607 4 роки тому +27

    Hi Sir, isn't p(x2 | y=yes) = 2/2= 1? not 2/4? (9:02)
    because p(food=1 | y=yes) = p(food=1, y=1)/ p(y=1) = ( 2/5 ) / (2/5) = 1

    • @ukc2704
      @ukc2704 4 роки тому +2

      @shawn chung yes,i think so ,
      because p(x2) given that yes will be 2/2(we have two yes and both are having x2=1) not 2/4.
      please correct me if my assumption is wrong.

    • @ppsheth91
      @ppsheth91 4 роки тому +2

      @@ukc2704
      Actually it will be p(x2 | y=yes) = no. of words (x2) / total no. of words in Class Y = Yes
      no. of words (x2) in yes class= 2
      total no. of words in Class( Y = Yes) = 5
      So it should be = (2/5) = 0.4

    • @piyushtalreja6855
      @piyushtalreja6855 3 роки тому

      @@ppsheth91 There are only 3 unique words where Class( y = yes ). It should be 2/3

  • @rahulsaha4728
    @rahulsaha4728 4 роки тому +20

    The calculation of conditional probabilities are wrong. P(x2|y=yes) = 2/2 not 2/4. There are 2 yes values, hence denominator is 2. Out of 2 yes values, both have x2 and so numerator is 2.

    • @aryantyagi2189
      @aryantyagi2189 2 роки тому

      Thanks bro, you are right :)

    • @atharavmahajan8202
      @atharavmahajan8202 2 роки тому

      @@aryantyagi2189 🧐

    • @santhiyaA-sz8db
      @santhiyaA-sz8db 9 місяців тому

      no. food =4
      food/yes ,, =2
      p(food/yes)=2/4.... i think its right

    • @abdelerahmanekhaldi6228
      @abdelerahmanekhaldi6228 7 місяців тому

      @@santhiyaA-sz8db no man it's conditional probability ,when P(A/B) you go look for the portion of A is true when B is true not overall

  • @ashwinshetgaonkar6329
    @ashwinshetgaonkar6329 2 роки тому +5

    8:24 p(the/yes) =number of times the==1 when o/p==1 also for p(food/yes)=2/2

    • @mini22q11
      @mini22q11 8 місяців тому +1

      you are right brother

  • @Waurice
    @Waurice 3 роки тому +7

    Your videos are really amazing. A quick note: P(1|yes) = 0.1 (10%) :)

  • @dipanwitamitra3029
    @dipanwitamitra3029 3 роки тому +43

    Sir, I have a doubt. When we are calculating p(X2/y=yes), should it not be equal to p(X2 intersection y=yes) / p(yes) = 2/2?

    • @santhoshreddy9161
      @santhoshreddy9161 3 роки тому +2

      yes , your explanation is correct

    • @dhruvgrover7416
      @dhruvgrover7416 3 роки тому

      yes, you are correct

    • @mohdkashif7295
      @mohdkashif7295 3 роки тому +4

      yeah you are correct, you can also see in this way that p(X2/y=yes) is basically -> number of times word X2 appear given output is 'yes'/ number of times 'yes' appear.

    • @ltoco4415
      @ltoco4415 3 роки тому

      That's right. It should be 2/2 i.e. 1.

    • @garvitgupta13
      @garvitgupta13 2 роки тому

      Yes you are correct.

  • @premtejak
    @premtejak 4 роки тому +8

    Nice explanation Krish. Can you explain
    1.How do we solve new word (taste) is presented in the existed sentence (The food is Delicious).
    2.What will happen Dataset is imbalanced.
    You mentioned like will upload this two problems in next video .I did not find that video,please upload Krish. Thank you

    • @vinaychitturi5183
      @vinaychitturi5183 4 роки тому +1

      I came across a concept called Laplace smoothing which helps how to deal when test data contains a new word which is not available in Training Data Set. This might help you.

  • @ravishankar-k4l2n
    @ravishankar-k4l2n 11 місяців тому +2

    I think P(x2 | Y=yes) should be 1 ... Same goes for the other cases x3. the sample space given y=yes should only count events where y=1.... Please Correct me if I am wrong....

  • @mrfolk84
    @mrfolk84 3 роки тому +5

    For word 'bad' , will its conditional probability be zero and will make whole probability zero since 0*anything is 0 ?

  • @rahulm774
    @rahulm774 4 роки тому +33

    There is a calculation mistake. 1/10= .1 and not .01 . That's why he got the wrong result initially.

    • @maheshmec1
      @maheshmec1 3 роки тому

      Decimal power goes off as we do normalize. so results should be ok.

  • @mandeepsinghnegi1931
    @mandeepsinghnegi1931 4 роки тому +2

    eagerly waiting for NLP series... btw your work is amazing. Thank you!

  • @ARSH_DS007
    @ARSH_DS007 4 роки тому +13

    I believe probability of No|Sentence-1 is zero due to the word delicious. So after normalization P(Yes|Sentence-1) is 100% and not 70-80. Please correct me if required.

    • @srinivasarukonda8768
      @srinivasarukonda8768 4 роки тому +1

      you are correct

    • @pradeep611
      @pradeep611 3 роки тому +2

      @@srinivasarukonda8768 YES, but if u calculate, P(The/yes)=1/2, P(Food/YES)=2/2, P(delicious/Yes)=2/2; Bcoz formulae for P(A/B)=P(A intersection B)/P(B) ; So the final answer will be 1/5. Can anybody confirm this?

    • @sudhirkv8292
      @sudhirkv8292 3 роки тому

      @@pradeep611 P(Food/YES) IS 2/4

    • @arpitaingermany
      @arpitaingermany 2 роки тому

      yes but why he used 0.03 and also it will be 0.1 not 0.01

  • @lamnguyentrong275
    @lamnguyentrong275 4 роки тому +6

    how can i find the next video, the youtube doesn't recommend :(. thank you for ur work, really clear

  • @RanveerSingh-sp3uj
    @RanveerSingh-sp3uj 4 роки тому +5

    it was good content, thanks for making such video, its really nice to learn thing like this

  • @jinal0217
    @jinal0217 3 роки тому +3

    Thank you for the video. Do you have Tutorial 50. I mean the next part explaining what if when the data set is imbalanced. Where does Naiye Bayes fail ?

  • @Satyam-ic4tl
    @Satyam-ic4tl Рік тому

    thank you sir ur videos has helped me a lot and i can't thank u enough for the great work that u r doing

  • @deepthisudhakaran6417
    @deepthisudhakaran6417 4 роки тому +6

    Thank you for this video. Can you please share videos for the implementation of these concepts using python also?

  • @winyourself553
    @winyourself553 3 роки тому +2

    Sir, where is that next video related to the problems in the Naive Bayes theorem I really want that and don't want to lose the movement.

  • @subhrajeetbiswal6942
    @subhrajeetbiswal6942 Рік тому +1

    p(x1/y=yes) should be 2/2 =1

  • @VikashKumar-ty6uy
    @VikashKumar-ty6uy 4 роки тому +3

    Waiting for NLP series eagerly....

  • @nandeesh_2005
    @nandeesh_2005 Рік тому

    Excellent explanation 👌

  • @darpansalunke1729
    @darpansalunke1729 4 роки тому

    Thank you sir... Great work sir... 👍👍👍👍🙏🙏🙏

  • @sumitkumar79598
    @sumitkumar79598 2 роки тому +1

    sir according to me P(x2/y)= P( x2 ^ y)/P(y) , where P(x2^ y) = how many time x2 = 1 when out output is 1 = 2, and P(y) is how many times we are getting output as 1. Therefore P(x2/y) = 2/2= 1, nor 2/4. correct me if I am wrong

  • @sandipansarkar9211
    @sandipansarkar9211 4 роки тому

    Superb explanation. Thanks a lot Krish

  • @sudhirkv8292
    @sudhirkv8292 3 роки тому +1

    I wounder why last feature was not calulated or explained. what will be the probabilty of (Bad|yes)? Is it 0? If yes, the whole answer will become zero

  • @ManashreeKorgaonkar
    @ManashreeKorgaonkar Рік тому

    Thank you sir, my concepts got cleared

  • @manthanrathod1046
    @manthanrathod1046 3 роки тому +1

    I don't understand why isn't the queries below are being addressed. Seems like the video was made hurryingly and all the calculation and concepts are messed up.

  • @swarupgorai
    @swarupgorai 4 роки тому +2

    please solve P(y=no/sentence) there is some problem in it

  • @badrlakhal5440
    @badrlakhal5440 6 місяців тому

    We calculate the probability of xi given y=1 this means we filter by y=1 and then calculate the probability. So, P(x2/y=1)=2/2 etc

  • @mayank_om
    @mayank_om 4 роки тому +2

    the is also stop words ?

  • @shakeelahmed8624
    @shakeelahmed8624 3 роки тому +2

    Well explained :) Do you have python implementation of same example ? Naive bayes implementation without library ?

  • @rakshitsinha4392
    @rakshitsinha4392 2 роки тому

    At 10:00 shouldn't we also take p( x4 | y=yes) ??

  • @devdaskamath975
    @devdaskamath975 4 роки тому +3

    Hi krish, Your videos are really amazing and been following you since the start of my ML study.
    can you upload the video about how to solve the problem of imbalanced datasets and also whenever the new word is present in unkown dataset i.e when probability becomes zero.?
    thankyou!

  • @zohaibramzan6381
    @zohaibramzan6381 3 роки тому +1

    Wrongly calculated the probabilities P(x1|yes) and others. Anyhow great content

  • @codingquiz
    @codingquiz 4 роки тому +4

    great content keep doing

  • @vishalvanpariya1466
    @vishalvanpariya1466 10 місяців тому

    Awesome video Krish, I feel the condition probability calculation is not correct. I've read some blogs and watched other videos there their method is different. and they all are the same, I referred AAIC, codebasis, and some blogs from analytics Vidhya and medium.

  • @shekhargaikwad5767
    @shekhargaikwad5767 3 роки тому

    Great Explanation sir when will you post Tutorial 50
    on to deal with word which is not present in the training dataset

  • @anishabharti1699
    @anishabharti1699 Місяць тому

    from where 0.03 came at 11:04?

  • @hamareshsaivarma6720
    @hamareshsaivarma6720 Рік тому

    Which input taken to predict the early reviewers by using navie bayes ??

  • @mansidnailartist
    @mansidnailartist 3 роки тому

    hi krish... in the example shown, you computed P(y=yes|sentence)..... shouldnt this sentence be a query sentence and not one of the training sentence?

  • @rajeshdoolla8623
    @rajeshdoolla8623 4 роки тому

    @krish Naik, Thanks for the nice explanation. I have this doubt, why we always apply Multinomial NB for text classification, why not binomial or Gaussian NB. could you please explain ?

  • @amitpingale8247
    @amitpingale8247 3 роки тому

    Hello Krish,
    Is likelihood the same as the probability for discrete variables?
    Here we are substituting the likelihood with the probability of the word in the Naive Bayes but when a continuous variable eg. income is an independent variable then we calculate the mean and sd to find the likelihood for that particular point in the distribution. So the confusion arises when we talk about categorical aka discrete variables we can interchange the terms probability and likelihood as it means the same. Kindly help

  • @sonalmaheshwari8222
    @sonalmaheshwari8222 4 роки тому +3

    Sir please tell how to implement it practically

  • @mohammadsalman2145
    @mohammadsalman2145 4 роки тому +1

    Sir, why are you not taking the probability of word 'bad', when you are computing the probability for yes.

    • @pitchthewoo
      @pitchthewoo 3 роки тому

      He's only showing us Sentence1 which doesn't have the word 'bad'.

  • @shadabmathematics9672
    @shadabmathematics9672 3 роки тому

    I learn naive Bayes before also,,, but with the real life use case I understand ,,,,,I have a question Krish sir ,,,how you take the values in the table (like 0,1),,,pls clear my doubt ,,,

  • @sunnysavita9071
    @sunnysavita9071 4 роки тому +1

    nice video as usual

  • @Vinay1272
    @Vinay1272 2 роки тому

    Really helpful❤

  • @abhijitkunjiraman6697
    @abhijitkunjiraman6697 2 роки тому

    You're the best!

  • @anirudhbalaji1042
    @anirudhbalaji1042 4 роки тому +1

    9:30 guys it 0.1 not 0.01

  • @dhainik.suthar
    @dhainik.suthar 3 роки тому +1

    Sir please also add code portion

  • @rajuneelakantam8099
    @rajuneelakantam8099 4 роки тому +3

    GOOD CONTENT TY...

  • @poojayadav-pq6rd
    @poojayadav-pq6rd 4 роки тому

    How did you calculate output column in BOW step? If we don't have that column then in that case how we will proceed?

  • @fro4e
    @fro4e 3 роки тому

    Good video. Wrong calculations on p(x1|y=yes) though

  • @ishtiakahmed3272
    @ishtiakahmed3272 4 роки тому

    sir would you like to share tutorial 50 you were supposed to share and would you please arrange machine learning playlist according to order

  • @tanvishinde805
    @tanvishinde805 4 роки тому

    9:24 why P(Bad | Yes) is not considered in this calculation ?

    • @MindScape322
      @MindScape322 4 роки тому +1

      We are calculating y=yes for the sentence 'The food is delicious' where after pre processing(strop words removal) the sentence becomes 'The food delicious' and the BOW is applied to get the feature matrix (chart ) shown in the video. Remember, BOW makes a feature matrix of all words in the data.Since we have 3 sentences and the word bad is also present, thus it will be there in the chart. however, when we are finding y= yes for sentence '"The food delicious" we wont include word ''bad' in the calculation as its not part of the sentence.
      If u want to calculate y= yes for the second sentence 'The food is bad' which after preprocessing becomes ''The food bad' then we wont calculate the value of delicious. Hope this clears your doubt.
      In case u are confused check out any UA-cam video for Bag of Words and stopwords removal.

    • @tanvishinde805
      @tanvishinde805 4 роки тому

      @@MindScape322 oh yes! Thank you

  • @krishj8011
    @krishj8011 7 місяців тому

    great tutorial..

  • @siddaramhalli
    @siddaramhalli 3 роки тому

    The video is good, but noticed few things :
    1. "The" is also a stopword. 2. it's 25% and not 0.25%

  • @vipingautam9501
    @vipingautam9501 3 роки тому

    Sir how do we do it on Image data... if we have pixels as feature of our data set..how can we find the P(features/Class=k) ??

  • @louerleseigneur4532
    @louerleseigneur4532 3 роки тому

    I don't understand, how you choose this feature table.

  • @pawankumar.a8451
    @pawankumar.a8451 4 роки тому

    Sir I am unable to find ur naive bayes video after 49th one in machine learning.. Please upload it..

  • @pratheeeeeesh4839
    @pratheeeeeesh4839 4 роки тому

    Great content!

  • @Kickass3131
    @Kickass3131 4 роки тому

    Where did 0.03 come from? @10:50

  • @deepthib7588
    @deepthib7588 3 роки тому

    why is f4 /x4, "Bad" not taken for p(yes/sentence)

  • @Miles2Achieve
    @Miles2Achieve 4 роки тому

    Can you please explain how to predict same for new sentence

  • @vincentdepaulsavarimuthu779
    @vincentdepaulsavarimuthu779 2 роки тому

    well explained

  • @joyliu8056
    @joyliu8056 2 місяці тому

    The comments mentioned a very big issue in this video. Please consider remaking this video instead of confusing people sir.

  • @divyark7557
    @divyark7557 2 роки тому

    P(y=No|Sent1)=3/5 * 2/3 * 1/3 * 3/3 = 0.13 is this computation correct?

  • @umeshsuggala3932
    @umeshsuggala3932 4 роки тому

    how to calculate when output is not there for other sentences?

  • @yukeshnepal4885
    @yukeshnepal4885 4 роки тому +1

    thanks for this awesome tutorial. Hats off to you sir.
    Would you please make video on Support Vector machines with its mathematical concepts...

  • @kumarraju2923
    @kumarraju2923 4 роки тому

    Which is the common tool for data science

  • @amitbudhiraja7498
    @amitbudhiraja7498 3 роки тому

    Where is the next video ? I mean the next part of naive Bayes after this

  • @vanitapatel6391
    @vanitapatel6391 4 роки тому

    sir....plz upload video on how to solve the problem when the naive Bayes is fail

  • @harendrakumar7647
    @harendrakumar7647 4 роки тому

    Could you please make a video on AB testing

  • @rickymehra109
    @rickymehra109 4 роки тому

    Can you please share the next part of this video ??

  • @elhadigasmi3122
    @elhadigasmi3122 3 роки тому

    The p(x=food| yes) =2/4 is correct?
    But "yes" is apparent just 2 times not 4!!!! Or im wrong??

  • @vedmodikauratg1865
    @vedmodikauratg1865 3 роки тому

    Sir very good video. Will it be possible to make video based on naive bayes using TF-IDF processed data

  • @arpitaingermany
    @arpitaingermany 2 роки тому

    I am confused
    First p(y=yes) is 0.1
    second p(y=no) is 0
    now after normalization, we get 1 for yes and 0 for No...
    correct if i am wrong

  • @sushilchauhan2586
    @sushilchauhan2586 4 роки тому +4

    i want a video on this too ...How To Apply Decision Tree' Classifier On Text Data (NLP)- Machine Learning.. on naive bayes it is easy but on dt i was confused.. pls help maae baap
    New Intro is awesome

  • @harshitvishwakarma310
    @harshitvishwakarma310 3 роки тому

    I am not able to find the next part about imbalanced dataset and how to deal with the drawback plz anyone can send the link ?? Also what if i have multi class dataset ??

  • @AjithlalK
    @AjithlalK 4 роки тому

    Thanks krish

  • @akshayakki3631
    @akshayakki3631 4 роки тому

    How to use this algoritham in digital marketing?

  • @shiv9475
    @shiv9475 4 роки тому +1

    Probability of the No will Be 0 because of delicious features probability is 0

  • @GlobalPulse2024
    @GlobalPulse2024 4 роки тому

    great sir

  • @LynetHannahThomas
    @LynetHannahThomas 4 роки тому

    Gibbs algorithm?

  • @maheshenumula9473
    @maheshenumula9473 4 роки тому

    Boss..It is not Bayes theorem formula.But Everyone are saying the same.The end calculation giving us right Bayes theorem.

  • @osamaosama-vh6vu
    @osamaosama-vh6vu 2 роки тому

    Thanks

  • @skc1995
    @skc1995 4 роки тому +1

    Sir it would be greatful of you, if you make a video explaining the output of all clasifiers and regressors. I mean, SVM, naive bais, logistic all returns coefficients. Its hugely confusing similar in regression aswell. It will great if you address this. You are the last hope sir

  • @reeteshkesarwani8960
    @reeteshkesarwani8960 4 роки тому

    sir what is written in tatoo in your hand??

  • @LynetHannahThomas
    @LynetHannahThomas 4 роки тому

    EM algorithm?

  • @swagatachakraborty8213
    @swagatachakraborty8213 3 роки тому

    where is tutorial 50?

  • @kalyanputatunda5806
    @kalyanputatunda5806 4 місяці тому

    P(y=no/sentence)=0.15
    .Please check.

  • @Human12358
    @Human12358 Рік тому

    can anyone send link of next video that mean 50

  • @chandrakanttarse5115
    @chandrakanttarse5115 4 роки тому +1

    BA student can become data scientist?

  • @hardikaggarwal446
    @hardikaggarwal446 4 роки тому

    beautiful

  • @poppychan1953
    @poppychan1953 4 роки тому

    dude amma see them all though i know nothing about programming

  • @dibyasahoo7632
    @dibyasahoo7632 2 роки тому

    Can anyone help me finding the tutorial -50

  • @issachscherian6744
    @issachscherian6744 3 роки тому

    can i get the code?

  • @chenlou7783
    @chenlou7783 2 роки тому

    1/10 is 0.01? but everything else makes sense. ty for sharing man.

  • @user-tg3tg9gh3q
    @user-tg3tg9gh3q 2 роки тому

    1 - There are problems in calculation of probabilities, for example p(X2/y=yes) and others. Please fix them, because it causes misunderstanding for all people who watch this video.
    2 - 1/10 is 0.1 not 0.01
    3 - For a positive sentence, how the probability of yes (25%) is less than no(75%) ?

  • @khushboovyas5932
    @khushboovyas5932 4 роки тому

    What if any of the count =0